Chứng minh rằng nếu a0b \(⋮\)31 thì (7a + b) \(⋮\)31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=6(x+7y)-(6x+11y)
= 6x+42y-6x-11y
= 31y
Do 31y chia hết cho 31.
6x+11y chia hết cho 31 \(\Rightarrow\) 6(x+7y) chia hết cho 31.
Do (6, 31)=1 \(\Rightarrow\) x+7y chia hết cho 31.
Vậy nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31.
Đặt \(A=6\left(x+7y\right)-\left(6x+11y\right)\)
\(=6x+42y-6x-11y\)
\(=3y\)
Do \(31y⋮31\)
\(6x+11y⋮31\Rightarrow6\left(x+7y\right)⋮31\)
Vì \(6\left(x+7y\right)⋮31\Rightarrow x+7y⋮31\)
Vậy nếu \(6x+11y⋮31\Rightarrow x+7y⋮31\)(Đpcm)
abcd=100ab+ cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)
abcd=100ab+cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67
=> abcd chia hết cho 67
=> (ĐPCM)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
- \(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
- \(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)
\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: a2 + b2 = 2ab
=> a2 + b2 - 2ab = 0
=> (a - b)2 = 0
=> a - b = 0
=> a = b (Đpcm)
Nhân phân phối zô:
B = (x2 +x -6) - (x2 -x -6) = 2x - 12 ( 2x luôn chẵn. Trừ thêm 1 số chẵn thì sẽ luôn chẵn)