chứng minh rằng trong tam giác cân đường trung tuyến xuất phát từ đỉnh đồng thời là tia phân giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo link này nha:https://hoc24.vn/hoi-dap/tim-kiem?id=137279&q=Ch%E1%BB%A9ng%20minh%20%3A%20trong%20m%E1%BB%99t%20tam%20gi%C3%A1c%20c%C3%A2n%2C%20%C4%91%C6%B0%E1%BB%9Dng%20ph%C3%A2n%20gi%C3%A1c%20xu%E1%BA%A5t%20ph%C3%A1t%20t%E1%BB%AB%20%C4%91%E1%BB%89nh%20%C4%91%E1%BB%93ng%20th%E1%BB%9Di%20l%C3%A0%20%C4%91%C6%B0%E1%BB%9Dng%20trung%20tuy%E1%BA%BFn%20%E1%BB%A9ng%20v%E1%BB%9Bi%20c%E1%BA%A1nh%20%C4%91%C3%A1y.
Để mik giúp bạn nha Ngọc Hàn Băng Nhi!
GT : ∆ABC
Hai phân giác BE, CF cắt nhau tại I
AI là tia phân giác của góc A
KL: IH = IK = IL
- Vì I nằm trên tia phân giác BE của góc B nên IL = IH (1) (theo định lí 1 về tính chất của tia phân giác).- Tương tự, ta có IK = IH (2).
- Từ (1) và (2) suy ra IK = IL (= IH), hay I cách đều hai cạnh AB, AC của góc A. Do đó I nằm trên tia phân giác của góc A (theo định lí 2 về tính chất của tia phân giác), hay AI là đường phân giác xuất phát từ đỉnh A của tam giác ABC.
Tóm lại, ba đường phân giác của tam giác ABC cùng đi qua điểm I và điểm này cách đều ba cạnh của tam giác, nghĩa là : IH = IK = IL.
Đây là chỉ là hướng dẫn thui( Do gõ nhìu mỏi tay wá!) Có gì bạn tự triểm khai ra nhé! Chúc bạn học tốt!
Vì tam giác ABC cân tại A nên góc ABC= góc ACB(theo tính chất của tam giác cân)
Xét tam giác ABD và tam giác ACD ta có:
góc BAD=góc CAD(gt); AB=AC(gt); góc ABD=góc ACD(cmt)
Do đó tam giác ABD= tam giác ACD(g.c.g)
=> BD=CD=> AD là trung tuyến của cạnh BC của tam giác ABC(đpcm)
Chúc bạn học tốt!!!
a:
b: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
Từ A kẻ đường thẳng m vuông góc với BC tại trung điểm D của BC.
\( \Rightarrow \) AD là đường trung tuyến của BC.
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(\begin{array}{l}\widehat {ADB} = \widehat {ADC} = {90^0}\\AD:chung\\BD = CD\left( {gt} \right)\\ \Rightarrow \Delta ABD = \Delta ACD\left( {c - g - c} \right)\end{array}\)
\( \Rightarrow AB = AC\)(2 cạnh tương ứng)
\( \Rightarrow \Delta ABC\)cân tại A (đpcm).
Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác
vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC
xét 2 tam giác vuông ABI và tam giác vuông ACI có;
IA chung
góc BAI=gócCAI (do AI là phân giác)
do đó tam giác BAI =tam giác CAI
suy ra AB=AC (2 cạnh tương ứng)
suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)
a) Kẻ đường trung trực của đoạn thẳng BC, cắt BC tại D
Ta có: Tam giác ABC cân nên AB = AC
\( \Rightarrow A\)thuộc đường trung trực của cạnh BC (t/c)
\( \Rightarrow AD\)là đường trung trực của BC.
Xét \(\Delta ABD\)và \(\Delta ACD\)có:
AB = AC (gt)
BD = CD (gt)
AD: cạnh chung
\( \Rightarrow \Delta ABD = \Delta ACD\left( {c - c - c} \right)\)
\( \Rightarrow \widehat {BAD} = \widehat {CAD}\)
\( \Rightarrow \)AD là tia phân giác góc BAC.
Vậy tam giác ABC cân tại A, đường trung trực của cạnh BC là đường cao và cũng là đường phân giác xuất phát từ đỉnh A của tam giác đó.
b)
Ta có: Điểm cách đều ba đỉnh của tam giác là giao điểm ba đường trung trực của tam giác đó.
Tam giác ABC đều nên AB = BC = CA
Tam giác ABC cân tại A có AN là đường trung tuyến
\( \Rightarrow \) AN là đường phân giác xuất phát từ đỉnh A (cm ở ý a)
Tương tự: BP, CM lần lượt là đường phân giác xuất phát từ B và C của tam giác ABC
Mà AN cắt BP tại G
\( \Rightarrow G\) là giao điểm ba đường phân giác của tam giác ABC
\( \Rightarrow G\) cách đều ba cạnh của tam giác ABC (Tính chất
Giả sử \(\Delta ABC\)cân tại A có AM là trung tuyến .
Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AB = AC ( gt )
AM ( cạnh chung )
BM = CM ( gt )
Suy ra : \(\Delta AMB\)= \(\Delta AMC\)( c.c.c )
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
Từ đó suy ra ; AM là tia phân giác của \(\Delta ABC\)