K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Ta có :   \(\left(-n-2\right).\left(-n-2\right)\)

\(=\left(-n-2\right).-n-\left(-n-2\right).2\)

\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)

\(=n^2+2n+2n+4\)

\(=n^2+4n+4\)( 1 ) 

\(\left(n+1\right)\left(n+3\right)\)

\(=\left(n+1\right).n+\left(n+1\right).3\)

\(=n^2+n+3n+3\)( 2 ) 

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)

\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)

Chúc bạn học tốt !!!! 

17 tháng 6 2021

A=\(\frac{a^n-1}{a^n}\)=\(1-\frac{1}{a^n}\)

B=\(\frac{a^n}{a^n+1}\)=\(\frac{a^n+1-1}{a^n+1}\)=\(1-\frac{1}{a^n+1}\)

vì 1/an>1/an+1 suy ra 1-1/an<1-1/an+1 suy ra A<B

chúc bạn học tốt!!!!

17 tháng 6 2021

Ta có : \(\frac{a^n-1}{a^n}\),\(\frac{a^n}{a^n+1}\)

Quy đồng , ta có :

\(A=\frac{\left(a^n-1\right).1}{a^n+1}\);\(B=\frac{a^n}{a^n+1}\)

=>\(A=\left(a^n-1\right).1;B=a^n\)

=> \(A=a^n-1;B=a^n\)

ta có:

th1 : nếu a hoặc n là âm thì :

\(a^n-1< a^n\)

th2: nếu cả a và n đều là dương hoặc âm thì :

\(a^n-1< a^n\)

VẬy...

2 tháng 3 2017

a)     <

b)     <

c)     >

2 tháng 3 2017

a) quy đồng : \(\frac{n}{2n+1}=\frac{3n}{6n+3}\)

Vì 3n < 3n + 1 => \(\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)hay \(\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)

b) Ta có :

\(\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)

 \(\frac{n+2}{n+3}=\frac{n+3-1}{n+3}=1-\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)nên \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)hay \(\frac{n}{n+1}< \frac{n+2}{n+3}\)

c)  giả sử \(\frac{n}{n+3}< \frac{n-1}{n+4}\)

\(\Leftrightarrow\frac{n\left(n+4\right)}{\left(n+3\right)\left(n+4\right)}< \frac{\left(n-1\right)\left(n+3\right)}{\left(n+3\right)\left(n+4\right)}\)

\(\Rightarrow n^2+4n< n^2+2n-3\)

\(\Rightarrow2n< -3\)( vô lí )

Vậy \(\frac{n}{n+3}>\frac{n-1}{n+4}\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)

Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)

b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3

c) Ta có:

\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)

Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)

a: \(log_2\left(M\cdot N\right)=log_2\left(2^5\cdot2^3\right)=log_2\left(2^8\right)=8\)

\(log_2M+log_2N=log_22^5+log_22^3=5+3=8\)

=>\(log_2\left(MN\right)=log_2M+log_2N\)

b: \(log_2\left(\dfrac{M}{N}\right)=log_2\left(\dfrac{2^5}{2^3}\right)=log_2\left(2^2\right)=2\)

\(log_2M-log_2N=log_22^5-log_22^3=5-3=2\)

=>\(log_2\left(\dfrac{M}{N}\right)=log_2M-log_2N\)

14 tháng 5 2022

`3^(2 + n) và 2^(3 + n) `

`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`

`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`

ta thấy `9>8   ; 3^n > 2^n `

vậy `3^(2 + n) > 2^(3 + n) `

14 tháng 5 2022

\(\left\{{}\begin{matrix}3^{2+n}=3^2\times3^n=9\times3^n\\2^{3+n}=2^3\times2^n=8\times2^n\end{matrix}\right.\)

ta có 

\(\left\{{}\begin{matrix}9>8\\3^n>2^n\end{matrix}\right.\)

\(=>3^{2+n}>2^{3+n}\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)\(2,4  =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)

Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).             

b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} =  - \frac{{10}}{{25}}\)        

Ta có: -3 > -10 nên \( - \frac{3}{{25}} >  - \frac{{10}}{{25}}\) nên \( - 0,12 >  - \frac{2}{5}\).

c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).

Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} >  - 0,3.\)

a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)

\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)

b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)

\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)

mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).

nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).