Tìm C biết C=1+1/2x(1+2)+1/3x(1+2+3)+1/4x(1+2+3+4)+......+1/16x(1+2+3+4+...+16)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
a, ( 3x - 1 )^2 - 3x( 3x + 2 ) = 0
<=>9x2-6x+1-9x2-6x=0
<=>-12x+1=0
<=>-12x=-1
<=>x=1/12
b, ( 2x + 3)^2 = 4x(x + 1 )
<=>(2x+3)2-4x(x+1)=0
<=>4x2+12x+9-4x2-4x=0
<=>8x+9=0
<=>8x=-9
<=>x=-9/8
c) vô fx gõ lại
d)x2-4x+4=16
<=>(x-2)2-16=0
<=>(x-2)2-42=0
<=>(x-2+4)(x-2-4)=0
<=>(x+2)(x-6)=0
<=>x+2=0 hoặc x-6=0
<=>x=-2 hoặc x=6
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6