K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Ta có :\(^{x^2+4x>0}\)

           \(x^2+4x+7>hoac=7\)

     \(\Rightarrow x^2+4x+7>0\)

    =} đa thức x^2 +4x+7 vô nghiệm

nhớ k cho mình nhé

1 tháng 5 2018

 Ta có : Denta phẩy = 2^2 - 7.1 = 4-7= -3 <0 -> phương trình vô nghiệm 

Câu này bạn thiếu đề bài : x^2 + 4x +7 =0 not x^2 + 4x +7 

Với lại máy không viết được denta nên khi trình bày bạn tự viết

23 tháng 1 2018

\(f\left(x\right)=9x^2+6x+2\)

\(=\left(9x^2+3x\right)+\left(3x+1\right)+1\)

\(=3x\left(3x+1\right)+\left(3x+1\right)+1\)

\(=\left(3x+1\right)\left(3x+1\right)+1\)

\(=\left(3x+1\right)^2+1\)   \(>0\)

\(\Rightarrow\)đa thức vô nghiệm

b)    \(g\left(x\right)=x^4-4x^2+2013\)

\(=\left(x^4-2x^2\right)-\left(2x^2-4\right)+2009\)

\(=x^2\left(x^2-2\right)-2\left(x^2-2\right)+2009\)

\(=\left(x^2-2\right)^2+2009\) \(>0\)

\(\Rightarrow\)đa thức vô nghiệm

20 tháng 5 2020

Ta có: \(2x^2-4x+5=2x^2-4x+2+3=2\left(x^2-2x+1\right)+3=2\left(x-1\right)^2+3\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

9 tháng 8 2017

Biến đổi G(x) ta được: 

\(G\left(x\right)=2x^2-8x+9=\left(2x^2-8x+8\right)+1=2\left(x-2\right)^2+1\ge1>0\forall x\)

Do đó : \(G\left(x\right)\) vô nghiệm (đpcm)

9 tháng 8 2017

hình như cái này dùng hđt mà lớp 7 chưa có hđt

1 tháng 6 2020

a) K(x) = -4x2 - 2

\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)

\(-2< 0\)

=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )

b) Q(x) = 2(x+1)+ 7

\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)

7 > 0

=> 2(x+1)+ 7 > 0 => Vô nghiệm ( đpcm )

c) cái này mình chịu nha TvT

29 tháng 3 2017

2x2 - 4x + 9

= (\(\sqrt{2}\)x - \(\sqrt{2}\))- 2 + 9

= (\(\sqrt{2}\)x - \(\sqrt{2}\))+ 7 >= 7

=> Bất phương trình 2x2 - 4x + 9 < 0 vô nghiệm

a: \(\Leftrightarrow px-2=0\)

Để phương trình vô nghiệm thì p=0

b: \(\Leftrightarrow x\left(p^2-4\right)=p-2\)

Để phương trình có vô số nghiệm thì p-2=0

hay p=2

7 tháng 1 2023

\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)

\(\Rightarrow\) phương trình vô nghiệm

\(x^2-4x+6=0 \)

Ta có

\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)

\(=>x^2-4x+6>0\)

\(\Rightarrow\) phương trình vô no 

7 tháng 1 2023

\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)

\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)