K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Gọi số sản phẩm nhóm thợ theo kế hoạch phải làm mỗi ngày là x (x ∈ ℕ * )

+) Theo kế hoạch: Thời gian hoàn thành là 3000/x (ngày)

+) Thực tế:

Số sản phẩm làm trong 8 ngày là 8x (sản phẩm)

Số sản phẩm còn lại là 3000 – 8x (sản phẩm)

Mỗi ngày sau đó nhóm thợ làm được x + 10 (sản phẩm)

Thời gian hoàn thành 3000 - 8 x x + 10  (ngày)

Vì thời gian thực tế ít hơn thời gian dự định là 2 ngày nên ta có phương trình:

Phương trình có hai nghiệm phân biệt: x 1 = − 25 – 125 = −150 (loại) và

x 2 = −25 + 125 = 100 (tmđk)

Vậy theo kế hoạch, mỗi ngày cần làm 100 sản phẩm

Đáp án: A

Gọi thời gian dự kiến là x

=>Số sản phẩm theo kế hoạch là 50x

Số sản phẩm thực tế là (x-3)*65

Theo đề, ta có: (x-3)*65-50x=255

=>15x-195=255

=>15x=450

=>x=30

=>Số sản phẩm dự kiến là 450sp

NV
20 tháng 3 2021

Gọi số sản phẩm làm theo kế hoạch mỗi ngày là x>0 và số ngày dự định là y>0

Ta có: \(xy=200\)

4 ngày đầu làm được: \(4x\) sản phẩm

Những ngày còn lại: \(\left(y-6\right)\left(x+10\right)\)

Theo bài ra ta có hệ:

\(\left\{{}\begin{matrix}xy=200\\4x+\left(y-6\right)\left(x+10\right)=200\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=200\\5y-x=30\end{matrix}\right.\)

\(\Rightarrow y\left(5y-30\right)=200\)

\(\Leftrightarrow y^2-6y-40=0\Rightarrow\left[{}\begin{matrix}y=10\\y=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{200}{10}=20\)

30 tháng 6 2019

#) Giải

+) Gọi số ngày mà xí nghiệp đã hoàn thành công việc là x (  x>0, ngày ) 
- Theo dự định, trong một ngày, xí nghiệp sản xuất đựoc số sản phẩm là 1500 : 30 = 50 (sản phẩm ) 
-Trên thực tế, trong một ngày, xí nghiệp sản xuất được số sản phẩm là 50 + 15 = 65 ( sản phẩm ) 
+) Theo đề bài ta có phương trình : 
65x = 1500 + 255 
<=> 65x = 1755 
<=> x =1755 : 65 =27 (ngày ) 
=> Thực tế, xí nghiệp đã rút ngắn được số ngày là 30 - 27 = 3 ( ngày )

     Đ/s: 3 ngày

~ Hok tốt ~

7 tháng 6 2020

Bài này có 2 cách nha bạn :)

*Cách 1 :

Số sản phẩm trong một ngày theo dự định ban đầu là \(\frac{1500}{30}=50\)( sản phẩm )

Thực tế, mỗi ngày xí nghiệp sản xuất được: 50 + 15 =65 (sản phẩm)

Tổng số sản phẩm thực tế xí nghiệm sản xuất được: 1500 + 255 = 1755 (sản phẩm)

Thời gian thực tế xí nghiệm sản xuất là: 1755 : 65 = 27 (ngày)

Vậy số ngày được rút ngắn so với dự định là: 30 – 27 = 3 (ngày). 

* Cách 2 :

Gọi số ngày rút bớt là x ngày : ( 0 < x < 30 )

Số sản phẩm trong một ngày theo dự định ban đầu là \(\frac{1500}{30}=50\)( sản phẩm )

Tổng số sản phẩm sản xuất được sau khi đã tăng năng suất là:

1500 + 255 =1755 (sản phẩm)

Thời gian xí nghiệp hoàn thành công việc trên thực tế là: 30−x (ngày)

Số sản phẩm sản xuất trong một ngày trên thực tế là:

\(\frac{1755}{30-x}\)( sản phẩm )

Theo đề bài, thực tế đã sản xuất mỗi ngày vượt 15 sản phẩm, nên ta có phương trình :

\(\frac{1755}{30-x}-50=15\)

\(\Leftrightarrow\frac{1755}{30-x}=50+15\)

\(\Leftrightarrow\frac{1755}{30-x}=65\)

\(\Leftrightarrow\frac{1755}{30-x}=\frac{65\left(30-x\right)}{30-x}\)

\(\Rightarrow1755=65\left(30-x\right)\)

\(\Leftrightarrow1755=1950-65x\)

\(\Leftrightarrow65x=1950-65x\)

\(\Leftrightarrow65x=195\)

\(\Leftrightarrow x=3\)( thỏa mãn đk )

Vậy xí nghiệp đã rút ngắn thời gian được 3 ngày.