Cho a,b,c>0
CM(a+b+c)(1/a+1/b+1/c)>=9
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
a) Mình sửa lại đề bài của bạn chút : Cần chứng minh \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left[\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right]^2\le ab\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}\le0\)(đpcm)
b) Ta có : \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\)
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(\left(2\sqrt{1+a}\right)^2=\left(1.\sqrt{1+b}+1.\sqrt{1+c}\right)^2\le\left(1^2+1^2\right)\left(1+b+1+c\right)\)
\(\Leftrightarrow4\left(1+a\right)\le2\left(b+c+2\right)\Leftrightarrow4+4a\le2\left(b+c\right)+4\Leftrightarrow b+c\ge2a\)(đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=\frac{bc+ac+ab}{1}=bc+ac+ab\Rightarrow a+b+c>bc+ac+ab\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1\)
\(=1-1+a+b+c-ac-bc-ab=a+b+c-\left(ac+bc+ab\right)\)
vì \(a+b+c>bc+ac+ab\)(chứng minh trên)\(\Rightarrow a+b+c-\left(bc+ac+ab\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
a) Áp dụng BĐT côsi ta có:\(\frac{a}{b}+\frac{b}{a}>=2\cdot\sqrt[2]{\frac{a}{b}\cdot\frac{b}{a}}=2\)
b)bạn nhân hết ra rồi áp dụng BĐT cối là được!!!!
ta có
\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)
Áp dụng bất đẳng thức Bunyakovsky , ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)