Tìm nghiệm của đa thức sau:
Q(x)=2x-7-(x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đa thức: Q(x)=2x2-2x+10
Có: 2x2 >= 0
2x < 2x2
=> 2x2- 2x >= 0
Mà 10 >0
=> 2x2-2x+10 >= 10
Vậy đa thức Q(x) vô nghiệm.
Cho x2-2x+10=0
=>x2-2.x.1+12+9=0
=>(x-1)2+9=0 (vô lí vì VT>VP)
=> Q(x) vô nghiệm
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
a) \(Q=2x^2y+5x+7x^2y-3x-2017\)
\(Q=(2x^2y+7x^2y)+(5x-3x)-2017\)
\(Q=9x^2y+2x-2017\)
b)\(P(x)=2x^5+2x^3-x^2+4x^4-15+x\)
\(P(x)=2x^5+4x^4+2x^3-x^2+x-15\)
Hệ số cao nhất là : 2
Hệ số tự do là : -15
Bậc của đa thức là 5
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
`a,`
`P(x)=5x^3-3x+7-x`
`= 5x^3+(-3x-x)+7`
`= 5x^3-4x+7`
Bậc của đa thức: `3`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`= -5x^3+(2x+2x)-x^2+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc của đa thức: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=Q(x)+P(x)`
`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`= 5x^3-4x+7-5x^3-x^2+4x-5`
`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`= -x^2+2`
Vậy, `M(x)=-x^2+2`
`c,`
`-x^2+2=0`
`=> -x^2=0-2`
`=> -x^2=-2`
`=> x^2=2`
`=> x= \sqrt {+-2}`
Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`
a: P(x)=5x^3-4x+7
Q(x)=-5x^3-x^2+4x-5
b: M(x)=P(x)-Q(x)
=5x^3-4x+7+5x^3+x^2-4x+5
=10x^3+x^2-8x+12
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
`a,`
`P(x)=5x^3 - 3x + 7 - x`
`= 5x^3 +(-3x-x)+7`
`= 5x^3-4x+7`
Bậc: `3`
`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`
`= -5x^3-x^2+(2x+2x)+(-3-2)`
`= -5x^3-x^2+4x-5`
Bậc: `3`
`b,`
`P(x)=M(x)-Q(x)`
`-> M(x)=P(x)+Q(x)`
`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`
`M(x)=-x^2+2`
`c,`
`M(x)=-x^2+2=0`
`\leftrightarrow -x^2=0-2`
`\leftrightarrow -x^2=-2`
`\leftrightarrow x^2=2`
`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)
`a)P(x)=5x^3-3x+7-x`
`=5x^3-3x-x+7`
`=5x^3-4x+7`
`Q(x)=-5x^3+2x-3+2x-x^2-2`
`=-5x^3-x^2+2x+2x-3-2`
`=-5^3-x^2+4x-5`
`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`
`=5x^3-5x^3-x^2-4x+4x+7-5`
`=-x^2+2`
`N(x)=5x^3-4x+7+5x^3+x^2-4x+5`
`=5x^3+5x^3+x^2-4x-4x+7+5`
`=10x^3+x^2-8x+12`
Đặt `M(x)=0`
`<=>-x^2+2=0`
`<=>2=x^2`
`<=>x=+-sqrt2`
Ta có : \(Q\left(x\right)=2x-7-\left(x+5\right)\)
\(\Rightarrow Q\left(x\right)=2x-7-x-5\)
\(\Rightarrow Q\left(x\right)=\left(2x-x\right)-\left(7+5\right)\)
\(\Rightarrow Q\left(x\right)=x-12\)
Xét \(Q\left(x\right)=0\)
\(\Rightarrow x-12=0\)
\(\Rightarrow x=0+12\)
\(\Rightarrow x=12\)
Vậy \(x=12\)là nghiệm của đa thức \(Q\left(x\right)\)
Chúc bạn học tốt !!!
-_-tui mới lớp 6 mừ