cho tam giác ABC vuông tại A, AB=21cm, AC=28cm, đường cao AH và trung tuyến AM. kẻ ME và MF(E thuộc AB, F thuộc AC).
a.c/m tam giác ABC đồng dạng tam giác HBA. từ đó suy ra hệ thức AB2=HB.BC
b. tính BC, AM, AH
c.c/m EF//BC
câu b vÀ C LM SAO MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
AM LÀ TRUNG TUYẾN => MB = MC = 6/2 = 3 cm
áp dụng định lí Pi-ta-go trong tam giác vuông, ta có:
AB2 = AM2 + BM2
=> AM2 = AB2 - BM2 = 52 - 32 = 25 - 9 = 16
=> AM = CĂN CỦA 16 = 4 cm
cm: ME = MF
xét 2 tam giác vuông: EMB VÀ FMC, CÓ:
MB = MC
GÓC EBM = GÓC FMC (TAM GIÁC ANC CÂN TẠI A)
=> tam giác EMB = TAM GIÁC FMC (CẠNH HUYỀN - GÓC NHỌN)
=> ME = MF (2 CẠNH TƯƠNG ỨNG) (đpcm)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
Sửa đề: Đường trung tuyến AM
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc B=góc C
=>ΔBEM=ΔCFM
b: ΔBEM=ΔCFM
=>BE=CF và ME=MF
AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a) bn lm đc rồi nên mk bỏ qua nhé
b) Áp dụng định lý Putago vào tam giác vuông ABC ta có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)
\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm
\(\Delta ABC\)vuông tại \(A\)có \(AM\)là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm
\(\Delta HBA~\Delta ABC\) (câu a)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm
c) \(\Delta BAC\)có \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)
\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)
\(\Delta CAB\) có \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)
\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)
\(\Delta ABC\)có \(AM\)là trung tuyến
\(\Rightarrow\)\(MB=MC\)(3)
Từ (1), (2) và (3) suy ra:
\(\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\)\(EF\)\(//\)\(BC\) (định lý Ta-lét đảo)
cảm ơn ạ