1. Tìm 2 số tự nhiên a,b (a>b) biết a x b =300 và ƯCLN (a,b) =5
2. Tìm 2 số tự nhiên a,b biết ab = 360 BCNN (a,b) =60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Do ƯCLN(a; b) = 15
\(\Rightarrow a=15k\left(k\in Z\right);b=15m\left(m\in Z\right)\)
\(a+15=b\Rightarrow15k+15=15m\)
\(\Rightarrow k+1=m\)
*) k = 1 \(\Rightarrow m=2\)
\(\Rightarrow a=15;b=30\Rightarrow BCNN\left(a;b\right)=30\) (loại)
*) \(k=2\Rightarrow m=3\Rightarrow a=30;b=45\Rightarrow BCNN\left(a;b\right)=90\) (loại)
*) \(k=3\Rightarrow m=4\Rightarrow a=45;b=60\Rightarrow BCNN\left(a;b\right)=180\) (loại)
*) \(k=4\Rightarrow m=5\Rightarrow a=60;b=75\Rightarrow BCNN\left(a;b\right)=300\) (nhận)
Vậy a = 60; b = 75
Theo công thức ta có:
a.b=BCNN(a,b).UCLN(a,b)=360
=> UCLN(a,b)=6
Đặt: a=6m; b=6n
=> mn=10=>m;n E {(1;10);(2;5);(5;2);(10;1)}
=> a;b E {(6;60);(12;30);(30;12);(60;6)}
b, tương tự cách làm trên
a) a.b=360,BCNN(a,b)=60
Ta có:ƯCLN(a,b).BCNN(a,b)=a.b
ƯCLN(a,b).60=360
ƯCLN(a.b)=6
Suy ra a=6m,b=6n với ƯCLN(m,n)=1
thay a=6m,b=6n vào a.b=360 ta được
6m.6n=360
36mn=360
mn=10
m | 5 | 1 | 2 | 10 |
n | 2 | 10 | 5 | 2 |
do đó
a | 30 | 6 | 12 | 60 |
b | 12 | 60 | 30 | 6 |
(câu b gần giống )
Ta có: \(UCLN\left(a,b\right)=\frac{a\cdot b}{BCNN\left(a,b\right)}\)
\(->15=\frac{a.b}{300}\)
\(=>a.b=15\cdot300\)
thay b = 15+b.Ta được:
( 15 + a ) . a=4500
Ta thấy: 75 . 60 = 4500
Vậy: \(a=75;b=60\)
Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1 với ( a > b ) => m > n
=> a.b=5m.5n=25.mn=300
=> mn=300 : 25 = 12
Ta có bảng liệt kê sau :
siuuuuu