\(\sqrt{\left(a+3\right)^2}\) với a<-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3\sqrt{5}-\left(\sqrt{5}-2\right)=2\sqrt{5}+2\)
b: \(=\left|a-b\right|-\left|b-c\right|-\left|c-d\right|\)
\(=b-a-\left(c-b\right)-\left(d-c\right)\)
=b-a-c+b-d+c
=2b-d-a
\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)
\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)
\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(M=\left(\frac{3}{\sqrt{a+1}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}+1\right)\)
\(=\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\right):\left(\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{\left(1+a\right)\left(1-a\right)}}\right)\)
\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}.\frac{\sqrt{\left(1+a\right)\left(1-a\right)}}{3+\sqrt{\left(1-a\right)\left(1+a\right)}}\)
\(=\sqrt{1-a}\left(đpcm\right)\)
a, \(\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2\left(\sqrt{5}>2\right)\)
b, \(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\left(3>\sqrt{2}\right)\)
c, Với a < 3
\(\sqrt{\left(a-3\right)^2}+\left(a-9\right)=3-a+a-9=-6\)
d, \(A=\sqrt{\left(2a+5\right)^2}-\left(2a-7\right)\)
\(=\left|2a+5\right|-2a+7\)
+) Xét \(x\ge\dfrac{-5}{2}\) có:
\(A=2a+5-2a+7=12\)
+) Xét \(x< \dfrac{-5}{2}\) có:
\(A=-2a-5-2a+7=-4a+2\)
Vậy...
\(A=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
\(A=\sqrt{a-1}+1+1-\sqrt{a-1}\) ( DO: a < 2 - gt => \(1>\sqrt{a-1}\))
\(A=2\)
Vậy A = 2.
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}\) = / 2 - \(\sqrt{3}\) / = 2 - \(\sqrt{3}\) ( vì 2 > \(\sqrt{3}\) )
b) \(\sqrt{\left(3-\sqrt{11}\right)^2}\) = / 3 - \(\sqrt{11}\) / = \(\sqrt{11}\) - 3 ( vì \(\sqrt{11}\) > 3 )
c) \(2\sqrt{a^2}\) = 2/a / = 2a (vì a> 0 )
d) \(3\sqrt{\left(a-2\right)^2}\) = 3 / a - 2 / = 3 ( 2 - a ) = 6 - 3a (vì a < 2 )
a, =\(\sqrt{\left[\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2\right]\left(a-1\right)^2}\)
=\(\sqrt{\left(\sqrt{3}+2\right)^2\left(a-1\right)^2}\)
=\(\left(\sqrt{3}+2\right)\left|a-1\right|\)
A=\(\sqrt{\left(a-1\right)+2\sqrt{a-1}+1}+\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\)
A=\(\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}+1\right)^2}\)
A=\(\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)
+Với a<2 thì a-1<1 => \(\sqrt{a-1}< 1\)
khi đó A=\(\left(\sqrt{a-1}+1\right)-\left(\sqrt{a-1}-1\right)\)= 2
a) 1
b) \(2\sqrt{x-2}+\sqrt{x+2}\)
c)câu này để bạn tự làm nhé
thiếu đề sao giải