Giải pt nghiệm nguyên: \(y\left(x-2\right)=x^2+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y
<=> x(x+1)=y2(y+1)2+2y(y+1)
<=> x2+x+1=(y2+y+1)2 (1)
nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0
nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)1 \(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)
ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
nếu x<-1 thì từ (x+1)2<x2+x+1<x2
=> (1) không có nghiệm nguyên x<-1
tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)
\(PT\Leftrightarrow x^3+2x^2+3x+2=y^3\)
Với x thuộc đoạn {-1,1} ta có
\(x^3< x^3+2x^2+3x+2< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(vô lí)
\(\Rightarrow x\in[-1;1]\)
\(\Rightarrow x\in\left\{-1,0,1\right\}\)
Với x=-1=> y=0(tm)
Với x=0=>\(y=\sqrt[3]{2}\left(ktm\right)\)
Với x=1=>y=2(tm)
Vậy...........
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
Đặt x=y=-2, pt trở thành:
\(\left(x+2\right)^2z+\left(z+2\right)^2x+26=0\Leftrightarrow\left(x+z+8\right)\left(xz+4\right)=6\)\(\Rightarrow x+z+8\in U\left(6\right)\)
Giải các TH ta thu được cặp số (x;y) thoả mãn đk là:
(x;y)=(1;-1), (3,-3), (-10;3), (1;-8)
\(y\left(x-2\right)=x^2+3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2=3\)
\(\Leftrightarrow\)\(y\left(x-2\right)-x^2+4=7\)
\(\Leftrightarrow\)\(y\left(x-2\right)-\left(x-2\right)\left(x+2\right)=7\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-x-2\right)=7\)\(=1.7=\left(-1\right).\left(-7\right)\)
Do \(x,y\)nguyên nên \(x-2\)và \(y-x-2\)nguyên
Ta lập bảng sau:
Vậy....
p/s: phần lập bảng bn ktra lại nha, (sợ tính sai)
Xét x=3 thì pt vô nghiệm
xét x khác 3, ta có \(y=\frac{x^2+3}{x-2}=\frac{x^2-4+7}{x-2}=x+2+\frac{7}{x-2}\)
Mà x,y là số nguyên => \(\frac{7}{x-2}\) là số nguyên => x-2 thuộc ước của 7, đến đây tự làm nhá