Tìm x biết |x|=3x - 2/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Leftrightarrow2x-2-3x+x^2=x^2\)
\(\Leftrightarrow\left(2x-3x\right)+\left(x^2-x^2\right)-2=0\)
\(\Leftrightarrow-\left(x+2\right)=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(b,3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Leftrightarrow3x^2+15x-2x-10=3x^2\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(15x-2x\right)-10=0\)
\(\Leftrightarrow13x-10=0\Leftrightarrow13x=10\Leftrightarrow x=\frac{10}{13}\)
1/4 - 5/2 x |3x - 1/5|=2/3 x |3x - 1/5|- 2/3
Tương đương với 1/4+2/3 = 2/3 x l3x - 1/5l + 5/2 x l3x-1/5l
11/12 = l3x - 1/5l x (2/3 + 5/2)
11/12 = l3x -1/5 l x 19/6
=> l3x - 1/5l = 11/12 : 19/6 = 11/38
Xét 2 trường hợp:
+ 3x - 1/5 = 11/38 => 3x = 11/38 + 1/5 = 93/190 => x = 93/190 : 3 = 31/190
+ 3x - 1/5 = -11/38 => 3x = -11/38 + 1/5 = -17/190 => x = -17/190 : 3 = -17/570
a,\(\left(x-1\right)^2-\left(2x\right)^2=0< =>\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(< =>\left(-x-1\right)\left(3x-1\right)=0< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\left(3x-5\right)^2-x\left(3x-5\right)=0< =>\left(3x-5\right)\left(3x-5-x\right)=0\)
\(< =>\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{5}{2}\end{cases}}\)
a, \(\left(x-1\right)^2-\left(2x\right)^2=0\Leftrightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow x=-1;x=\frac{1}{3}\)
b, \(\left(3x-5\right)^2-x\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x-5-x\right)=0\Leftrightarrow\left(3x-5\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{5}{3};x=\frac{5}{2}\)
\(\Leftrightarrow\left(x+1\right)\left(3x-5\right)=0\)
hay \(x\in\left\{-1;\dfrac{5}{3}\right\}\)
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
Thu gọn biểu thức:
\(9x\left(x+5\right)-\left(3x+2\right)\left(3x-2\right)\)
\(=9x^2+45x-\left(9x^2-4\right)\)
\(=45x+4\)
Tìm x. biết:
\(\left(3x-2\right)^2=49x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=7x\\3x-2=-7x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};\dfrac{1}{5}\right\}\)
a) \(\left|2x-5\right|=x+1\)
<=> \(\orbr{\begin{cases}2x-5=x+1\left(x\ge\frac{5}{2}\right)\\5-2x=x+1\left(x< \frac{5}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\left(ktm\right)\\3x=4\end{cases}}\)
<=> \(x=\frac{4}{3}\left(tm\right)\)
b) \(\left|3x-2\right|-1=2x\) <=> \(\left|3x-2\right|=2x+1\)
<=> \(\orbr{\begin{cases}3x-2=2x+1\left(x\ge\frac{2}{3}\right)\\2-3x=2x+1\left(x< \frac{2}{3}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(ktm\right)\\5x=1\end{cases}}\) <=> \(x=\frac{1}{5}\left(tm\right)\)
c) \(\left|x-5\right|+5=x\) <=> \(\left|x-5\right|=x-5\)
<=> \(\orbr{\begin{cases}x-5=x-5\left(x\ge5\right)\\5-x=x-5\left(x< 5\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=10\end{cases}}\) <=> 0x = 0 (luôn đúng) hoặc x = 5 (ktm)
Vậy x \(\ge\)5
d) \(\left|3x-5\right|=3x-5\) <=> \(\orbr{\begin{cases}3x-5=3x-5\left(x\ge\frac{5}{3}\right)\\5-3x=3x-5\left(x< \frac{5}{3}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\left(luônđúng\right)\\6x=10\end{cases}}\)
<=> \(\orbr{\begin{cases}x\ge\frac{5}{3}\\x=\frac{5}{3}\left(ktm\right)\end{cases}}\)Vậy x \(\ge\)5/3
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`