số tận cùng của 23183
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Lê Thị Như Ý09/12/2014 lúc 21:06 Trả lời 5 Đánh dấu
1, Chữ số tận cùng của 22009 là ?
2, Chữ số tận cùng của 71993 là ?
3, Chữ số tận cùng của 21 + 22 + ... + 2100 là ?
4, Chữ số tận cùng của 20092008 là ?
5, Chữ số tận cùng của 171000 là?
6, Chữ số tận cùng của 2.4.6. ... .48 - 1.3.5. ... .49 là ?
a, A = B - C
B = \(\overline{..b}\)
C = \(\overline{...c}\)
\(\overline{..b}\) - \(\overline{..c}\) = \(\overline{..d}\)
A = \(\overline{..d}\)
b, A = B + C
B = \(\overline{..b}\)
C = \(\overline{..c}\)
\(\overline{..b}+\overline{..c}=\overline{..d}\)
A = \(\overline{...d}\)
Để tìm chữ số tận cùng của một biểu thức số học, ta có thể áp dụng một số nguyên tắc đơn giản như sau:
-
Với phép cộng và phép trừ:
- Chữ số tận cùng của tổng (hoặc hiệu) của các số được tính toán bằng cách lấy tổng (hoặc hiệu) của các chữ số tận cùng tương ứng.
- Ví dụ: 34 + 56 = 90, chữ số tận cùng của 34 là 4 và chữ số tận cùng của 56 là 6, nên chữ số tận cùng của 90 là 4 + 6 = 10, và chữ số tận cùng của 10 là 0.
-
Với phép nhân:
- Chữ số tận cùng của tích của các số được tính toán bằng cách lấy tích của các chữ số tận cùng tương ứng.
- Ví dụ: 23 x 45 = 1035, chữ số tận cùng của 23 là 3 và chữ số tận cùng của 45 là 5, nên chữ số tận cùng của 1035 là 3 x 5 = 15, và chữ số tận cùng của 15 là 5.
-
Với phép luỹ thừa:
- Chữ số tận cùng của một số được tính bằng cách lấy chữ số tận cùng của cơ số và nhân nó với chữ số tận cùng của số mũ. Sau đó, lặp lại quá trình này cho tất cả các bước còn lại của số mũ.
- Ví dụ: 7^4 = 2401, chữ số tận cùng của 7 là 7 và chữ số tận cùng của 4 là 4, nên chữ số tận cùng của 2401 là 7^4 = 2401 = 1, và chữ số tận cùng của 1 là 1.
Lưu ý rằng quy tắc này chỉ áp dụng cho tính toán chữ số tận cùng và không liên quan đến giá trị thực tế của biểu thức. Nếu bạn cần tính toán kết quả chính xác của biểu thức, bạn phải xem xét toàn bộ các chữ số và phép tính trong biểu thức đó.
4 mũ chẵn có tận cùng bằng 6
nen 2014
2014có tận cùng bằng 6
\(4^{457}\)= \({4}^{2.228+1}\) = 4^2*228 * 4 = ( 4^2 )^228 * 4 = ( ...6 )^228 * 4 = (...6) * 4 = ( ...4 )
Vậy chữ số tận cùng của 4^457 là 4
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
\(23^{183}=23^{4k+3}\left(=\right)\left(23^4\right)^k.23^3\left(=\right)\left(...1\right)^k....7\left(=\right)...1....7=...7\)
vậy 23^183 có tận cùng là 7
chữ số tận cùng của 23^183 là 7