Tìm số tự nhiên có 4 chữ số mà chữ số tận cùng của số đó bằng 7.Biết rằng nếu chuyển số 7 này lên đầu thì mới là 2277 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) =2443
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 2443
(7000 -7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 2443
6993 - \(\overline{abc}\) \(\times\) 9 = 2443
\(\overline{abc}\) \(\times\) 9 = 6993 - 2443
\(\overline{abc}\) \(\times\) 9 = 4550
\(\overline{abc}\) = 4550 : 9
\(\overline{abc}\) = \(\dfrac{4550}{9}\)
Không có số nào thỏa mãn đề bài
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Khi chuyển số lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7= 5859
(7000 - 7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức: \(\overline{abc7}\) ta được số cần tìm là: 1267
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới là: \(\overline{7abc}\)
Theo bài ra ta có:
\(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 5859
(7000 -7) - \(\overline{abc}\) \(\times\)(10 -1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức \(\overline{abc7}\) ta được số cần tìm là 1267
Đáp số: 1267
Lời giải:
Gọi số cần tìm là $\overline{abc7}$ với $a,b,c$ là số tự nhiên có 1 chữ số. $a>0$
Theo bài ra ta có:
$\overline{7abc}-\overline{abc7}=5859$
$7000+\overline{abc}-(\overline{abc}\times 10+7)=5859$
$7000+\overline{abc}-\overline{abc}\times 10-7=5859$
$6993+\overline{abc}-\overline{abc}\times 10=5859$
$6993+\overline{abc}=5859+\overline{abc}\times 10$
$6993-5859=\overline{abc}\times 10-\overline{abc}$
$1134=9\times \overline{abc}$
$\overline{abc}=1134:9=126$
Vậy số cần tìm là $1267$
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé
Vì số cần tìm là số có 3 chữ số mà chữ số tận cùng là 7 nên số cần tìm có dạng: \(\overline{ab7}\)
Khi chuyển chữ số 7 hàng đơn vị lên đầu ta được số mới là: \(\overline{7ab}\)
Theo bài ra ta có: \(\overline{7ab}\) - \(\overline{ab7}\) \(\times\) 3 = 12
700 + \(\overline{ab}\) - \(\overline{ab}\) \(\times\) 10 \(\times\) 3 - 21 = 12
679 - \(\overline{ab}\) \(\times\) ( 30 - 1) = 12
\(\overline{ab}\) \(\times\) 29 = 679 - 12
\(\overline{ab}\) \(\times\) 29 = 667
\(\overline{ab}\) = 667 : 29
\(\overline{ab}\) = 23
Số tự nhiên 237
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)