K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDC=1/2*sđ cung MC=90 độ

=>góc BDC=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: ABCD nội tiếp

=>góc BCA=góc BDA

=>góc BCA=góc SCA

=>CA là phân giác của góc SCB

c: Gọi N là giao của MH với AB

góc MHC=1/2*180=90 độ

=>NH vuông góc BC

Xét ΔCBN có

NH,CA là đường cao

NH cắt CA tại M

=>M là trực tâm

=>BM vuông góc CN

=>C,D,N thẳng hàng

=>MH,CD,BA đồng quy

10 tháng 8 2018

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

19 tháng 11 2019

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

b) Xét đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) + Trong đường tròn đường kính MC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp cùng chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Trong đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

5 tháng 10 2019

a, Học sinh tự chứng minh

b, Học sinh tự chứng minh

c, Học sinh tự chứng minh

d, Chú ý:  B I A ^ = B M A ^ , B M C ^ = B K C ^

=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp  DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC

Dấu "=" xảy ra <=>  B I C ^ = 90 0 => I ≡ A => MA

20 tháng 4 2016

Hình bạn tự vẽ nha

a) Xét đường tròn đường kính MC

Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)

Hay góc BDC = 90 độ

Xét tứ giác BADC có 

Góc BAC =90 ĐỘ (GT)

Góc BDC =90 độ (cmt)

Mà hai đỉnh của góc này ở vị trí  kề nhau do đó tứ giác BADC nt đường tròn ĐK BC

tâm O của dt là trung điểm BC

b)Xét dt đk BC có 

Góc ADB=GÓC  ACB (hai góc nt cùng chắn cung AB)(1)

Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)

hay Góc BMN  = GÓC ABC (2) 

Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)

=> BD là phần giác góc ADN (đpcm)

c)Xét tam giác ABC có

AM=MC(GT)

OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)

=> OM lad đtb của tam giác ABC

Suy ra OM//AB (t/c Đtb)

Do đó Góc OMC = 90 độ

Suy ra OM là tt của dt dk MC

d)Xét dt dk MC có

Góc MNC = 90 dộ (góc nt chắn nửa dt)

Hay góc PNC =90 độ

Xét Tam giác BPC CÓ

BD vuông góc PC ( góc BDC =  90) (cmt)

AC vuông góc với PB (góc ABC =90)(GT)

Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC

Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)

Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng

--------------------------------------------------Hết------------------------------------------

Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp  ý kiến đẻ mình hoàn thiện hơn

a: góc CIM=góc CNM=1/2*180=90 độ

=>NM vuông góc BC

góc MAB+góc MNB=180 độ

=>MABN nội tiếp

góc CAB=góc CIB=90 độ

=>CIAB nội tiếp

b: góc ANM=góc MBA

góc INM=góc ICA

mà góc MBA=góc ICA

nên góc ANM=góc INM

=>NM là phân giác của góc ANI

c: Xét ΔBNM vuông tại N và ΔBIC vuông tại I có

góc NBM chung

=>ΔBNM đồng dạng với ΔBIC

=>BN/BI=BM/BC

=>BN*BC=BI*BM

Xét ΔCNM vuông tại N và ΔCAB vuông tại A có

góc NCM chung

=>ΔCNM đồng dạng với ΔCAB

=>CN/CA=CM/CB

=>CN*CB=CA*CM

=>BM*BI+CM*CA=BC^2=AB^2+AC^2