K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

\(x^3+px^2+\left(p-1+\frac{1}{p-1}\right)x+1=0\)

\(\Leftrightarrow\left[x-\left(1-p\right)\right]\left[\left(p-1\right)x^2+\left(p-1\right)x+1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1-p\\\left(p-1\right)x^2+\left(p-1\right)x+1=0\end{cases}}\left(1\right)\)

Để pt có no duy nhất <=> hệ pt (1) có no duy nhất

<=> pt(1) vô no hoặc pt(1) có nghiệm kép x1=x2=1-p

Kết hợp điều kiện \(p>1,p\inℕ\)ta tìm được các giá trị của p thỏa mãn là

p=2,3,4

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

9 tháng 5 2021

a, - Xét phương trình (1) có : \(\Delta^,=b^{,2}-ac\)

\(=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5\)

\(=m^2-4m+6=m^2-4m+4+2=\left(m-2\right)^2+2\)

- Thấy \(\Delta^,\ge2>0\) => ĐPCM .

b,Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(TH_1:x_1=0\Rightarrow m=\dfrac{5}{2}\)

- Thay m và x1 vào một PT ta được : x2 = -3 ( L )

=> Không tồn tại x1 = 0 để nghiệm còn lại lớn hơn 0 .

\(TH_2:x_1< 0< x_2\)

\(\Leftrightarrow ac< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

Vậy ...

 

 

 

 

 

15 tháng 8 2021

Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3

Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)

Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)

\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)

\(\Leftrightarrow m^2-10-15=0\)

\(\Delta=b^2-4ac=100+60=160\)

\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)

Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài

15 tháng 8 2021

\(a=\frac{1}{2};b=-2;c=m-1\)

\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)

\(\Delta=4-2\left(m-1\right)\)

\(\Delta=4-2m+2\)

\(\Delta=6-2m\)

để pt có 2 nghiệm phân biệt thì \(6-2m>0\)

\(< =>m< 3\)

áp dụng vi - ét

\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)

\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)

\(\left(2m-2\right)\left(6-2m\right)+48=0\)

\(12m-12-4m^2+4m+48=0\)

\(-4m^2+16m+36=0\)

\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)

\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)

\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)

vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

14 tháng 3 2019