K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

+> \(TH1:a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+c+a}{a+b+c}=2\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{a+b}{c}=2\\\frac{b+c}{a}=2\\\frac{c+a}{b}=2\end{cases}}\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{b+a}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)

\(=8\)

+>\(TH2:a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Từ trường hợp 1 ta có :

\(M=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(=-1\)

Vậy giá trị biểu thức M là 8 hoặc -1

1 tháng 8 2016

\(a,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0.abc=0\)

\(a+b+c=1=>\left(a+b+c\right)^2=1=>a^2+b^2+c^2+2ab+2bc+2ac=1\)

\(=>a^2+b^2+c^2+2\left(ab+bc+ac\right)=1=>a^2+b^2+c^2=1-0=1\) (vì ab+bc+ac=0)

\(b,S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3=\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)-3\)

\(=2014.\frac{1}{2014}-3=1-3=-2\)

Vậy.....................

24 tháng 7 2015

Super Man mà lại còn phải lên đây để hỏi bài à?

28 tháng 7 2016

Super man hỏi bài? Nghịch lý

18 tháng 12 2020

ok

 

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

loading...  loading...  loading...  loading...  

8 tháng 2 2021

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\) 

\(=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Rightarrow\hept{\begin{cases}a+b+c=3a\\a+b+c=3b\\a+b+c=3c\end{cases}}\Rightarrow a=b=c\)

Khi đó: \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=2^3=8\)

Vậy B = 8

DD
8 tháng 2 2021

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Leftrightarrow\frac{a+b}{c}-1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)

\(\Leftrightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)

\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\)

\(B=\frac{a+b}{c}.\frac{c+a}{b}.\frac{b+c}{a}=2.2.2=8\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bạn nên viết đề bài bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.