M==1+1/2+1/2^2+1/2^3+....+1/2^2016
So sanh M voi 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(>1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}\)
\(>1+\frac{1}{2}-\frac{1}{6}=\frac{4}{3}\)
M = 1 + 1/2 + 1/22 + ... + 1/22015 + 1/22016
=> 2.M = 2 + 1 + 1/2 + ... + 1/22014 + 1/22015
=> 2.M = 3 + 1/2 +...+ 1/22014 + 1/22015
=> 2.M - M = 3 -1 + 1/22016
=> M = 2 + 1/22016
=> M > 2 ( Do 2 + 1/22016 > 2 )
\(M=\frac{1}{1.2}+\frac{2}{1.2.3}+.....+\frac{9}{1.2.3.....10}\)
\(M=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+....+\frac{10-1}{1.2......10}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{6}+....+\frac{10}{1.2.....10}-\frac{1}{1.2.....10}\)
\(M=1-\frac{1}{1.2.3......10}\)
\(M=1-\frac{1}{3628800}\)
Vì \(1=1\)mà \(\frac{1}{3628800}< 1\)nên \(1-\frac{1}{3628800}< 1\)
Vậy \(M< 1\)
\(M=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2016}}\)
\(\Rightarrow\)\(2M=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}\)
\(\Rightarrow\)\(2M-M=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(\Rightarrow\)\(M=2-\frac{1}{2^{2016}}< 2\)
Vậy M < 2