K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(N=1+3+3^2+...+3^{2016}\)

\(\Leftrightarrow3N=3+3^2+...+3^{2017}\)

\(\Leftrightarrow N=\dfrac{3^{2017}-1}{2}\)

\(M=\dfrac{3^{2017}-1}{2}\cdot\dfrac{1}{3\left(3^{2017}-1\right)}=\dfrac{1}{6}\)

3 tháng 6 2020

ta có B= 1/2018+2/2017+3/2016+...+2017/2+2018/1

=> B=1+1+1+..+1( 2018 số hạng 1)+ 1/2018+..+2017/2

=> B= (1+1/2018)+(1+2/2017)+(1+3/2016)+...+(1+2017/2)+ 2019/2019

=> B= 2019 *(1/2+1/3+...+1/2019)

=> A/B= (1/2+1/3+...+1/2019)/2019*(1/2+1/3+..+1/2019)

=> A/B= 1/2019

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!