K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

a) Xet tam giac MNK va tam giac MPK co:

Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP )  (1)

MK ( canh chung )  (2)

MN = MP ( tam giac MNP can tai M )  (3)

Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )

b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va 

goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )

ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA

Xet tam giac MNA va tam giac MPB co:

PB = NA ( gt )  (1)

MP = MN ( tam giac MNP can tai M )  (2)

goc MPB = goc MNA ( cmt )  (3)

Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )

=> MA = MB ( 2 canh tuong ung )

c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB

                                           MED            MBA                                       MED           MBA

Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )                                   

20 tháng 4 2021

không ạ !!!!!!!!!!

20 tháng 4 2021

Hình vẽ:

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy

25 tháng 4 2021

^ ^             con gà

\_/    

a) Ta có: \(\widehat{MNP}+\widehat{MNA}=180^0\)(hai góc kề bù)

\(\widehat{MPN}+\widehat{MPB}=180^0\)(hai góc kề bù)

mà \(\widehat{MNP}=\widehat{MPN}\)(hai góc ở đáy của ΔMNP cân tại M)

nên \(\widehat{MNA}=\widehat{MPB}\)

Xét ΔMNA và ΔMPB có 

MN=MP(ΔMNP cân tại M)

\(\widehat{MNA}=\widehat{MPB}\)(cmt)

AN=PB(gt)

Do đó: ΔMNA=ΔMPB(c-g-c)

Suy ra: MA=MB(hai cạnh tương ứng)

Xét ΔMAB có MA=MB(cmt)

nên ΔMAB cân tại M(Định nghĩa tam giác cân)

b) Sửa đề: PE vuông góc với MB

Ta có: ΔMAN=ΔMBP(cmt)

nên \(\widehat{AMN}=\widehat{BMP}\)(hai góc tương ứng)

hay \(\widehat{DMN}=\widehat{EMP}\)

Xét ΔMDN vuông tại D và ΔMEP vuông tại E có 

MN=MP(ΔMNP cân tại M)

\(\widehat{DMN}=\widehat{EMP}\)(cmt)Do đó: ΔMDN=ΔMEP(cạnh huyền-góc nhọn)

Suy ra: MD=ME(hai cạnh tương ứng)

c) Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MDE}=\dfrac{180^0-\widehat{DME}}{2}\)(Số đo của một góc ở đáy trong ΔMDE cân tại M)

hay \(\widehat{MDE}=\dfrac{180^0-\widehat{AMB}}{2}\)(1)

Ta có: ΔMAB cân tại M(cmt)

nên \(\widehat{MAB}=\dfrac{180^0-\widehat{AMB}}{2}\)(Số đo của một góc ở đáy trong ΔMAB cân tại M)(2)

Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MAB}\)

mà \(\widehat{MDE}\) và \(\widehat{MAB}\) là hai góc ở vị trí đồng vị

nên DE//AB(Dấu hiệu nhận biết hai đường thẳng song song)

a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)

nên NQ=4(cm)

b: Xét ΔQMP và ΔQND có 

QM=QN

\(\widehat{MQP}=\widehat{NQD}\)

QP=QD

Do đó; ΔQMP=ΔQND

Suy ra: MP=ND

a: Xét ΔMAP và ΔBAN có

AM=AB

\(\widehat{MAP}=\widehat{BAN}\)(hai góc đối đỉnh)

AP=AN

Do đó: ΔMAP=ΔBAN

b: Ta có: ΔMAP=ΔBAN

=>\(\widehat{AMP}=\widehat{ABN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MP//BN

c: Xét ΔAIB có

AH là đường cao

AH là đường trung tuyến

Do đó:ΔAIB cân tại A

=>AI=AB

mà AB=AM

nên AI=AM