K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(1/\)

Để \(\frac{21n+4}{14n+3}\)là phân số tối giản

Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)

Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)

Ta có:

\(21n+4⋮a\)

\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)

\(14n+3⋮a\)

\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)

Từ (1) và (2) suy ra:

\((42n+9)-(42n+8)⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\inƯ\left(1\right)\)

\(\Rightarrow a=1\)hoặc\(a=-1\)

\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản

25 tháng 4 2018

\(2/\)

\(x^2+2x+2=x^2+x+x+1+1\)

\(=x\left(x+1\right)+\left(x+1\right)+1\)

\(=\left(x+1\right)\left(x+1\right)+1=\left(x+1^2\right)+1>0\)

Vậy đa thức \(x^2+2x+2\)không có nghiệm

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

Câu 1: Phân tích thành nhân tử:a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)c. \(x^4+4\)d. \(x^4+x^2+2x+6\)Câu 2:a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)c.1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m...
Đọc tiếp

Câu 1: Phân tích thành nhân tử:

a. \(x^4+x\left(2016x+1\right)-2016\left(x-1\right)\)

b. \(\left(x^2\left(y+1\right)+4\right)^2-\left(4x^2+y+1\right)^2\)

c. \(x^4+4\)

d. \(x^4+x^2+2x+6\)

Câu 2:

a. Cho \(x=a+\frac{1}{a};y=b+\frac{1}{b};z=ab+\frac{1}{ab}\left(a,b\ne0\right)\)Tính giá trị của \(M=x^2+y^2+z^2-xyz\)
b.Cho hai số a,b thoả a-b=ab=1. Tính giá trị của \(N=a^6+2a^4b^2+a^2b^4+9b^2+1989\)

c.

1.1. Cho đa thức \(P\left(x\right)=x^2-\left(m^2-2\right)x+m-35\)Xác định m để đa thức P(x) không có nghiệm bằng 5.

1.2. Cho đa thức \(Q\left(x\right)=ax^2+bx+c\)Viết a khác 0 và Q(x)>0 với mọi x thuộc R. Chừng minh: \(\frac{9a-5b+3c}{4a-2n+c}>2\)

Câu 3:

a. Tìm x,y là số tự nhiên, biết \(5^x=2^y+124\)

b.

1.1) Nếu a+b+c là số chẵn thì chứng minh: \(m=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)là số chẵn

1.2) Nếu a+b+c chia hết cho 6 thì chứng minh: \(n=\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\)chia hết cho 6

 

0
8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

26 tháng 6 2020

Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039 

=> 2 ( a + b + c ) = 4039 - c (1)

a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)

=> 2 ( a + b + c ) = 4039 - c \(\le\)4039 

=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)

mà f(1) = a + b + c 

=> f (1) \(\le2019\frac{1}{2}\)

Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2

24 tháng 2 2017

giai bai toan giang (n+3).(n+7) 0 online math lop 6

24 tháng 2 2017

a) d = -9b nên P(3) = 27a + 9b + 3c + d = 27a + 3c ; P(-3) = -27a + 9b - 3c + d = -27a - 3c

=> P(3).P(-3) = (27a + 3c)(-27a - 3c) = -(27a + 3c)2\(\le0\)

b) Để\(A\in Z\)thì\(n+1⋮n^2+2\)nên bội của n + 1 là (n + 1)(n - 1) chia hết cho n2 + 2

\(\Rightarrow n^2+2-3⋮n^2+2\Rightarrow3⋮n^2+2\)\(n^2+2\ge2\)=> n2 + 2 = 3 => n2 = 1 => n = -1 ; 1.Thử lại :

n-11
n + 102
n2 + 233
A0 (chọn)\(\frac{2}{3}\)(loại)

Vậy n = -1