K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2018

1) để \(A\inℤ\) thì \(2n-5⋮3n+1\)

\(\Rightarrow3\left(2n-5\right)⋮3n+1\)

\(\Rightarrow6n-15⋮3n+1\) ( 1 )

ta có :

\(3n+1⋮3n+1\)

\(\Rightarrow2\left(3n+1\right)⋮3n+1\)

\(\Rightarrow6n+2⋮3n+1\) ( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow6n-15-\left(6n+2\right)⋮3n+1\)

\(\Rightarrow6n-15-6n-2⋮3n+1\)

\(\Rightarrow-17⋮3n+1\)

\(\Rightarrow3n+1\in\text{Ư}_{\left(17\right)}\)

\(\text{Ư}_{\left(17\right)}=\text{ }\left\{1;-1;17;-17\right\}\)

lập bảng giá trị

\(3n+1\)\(1\)\(-1\)\(17\)\(-17\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{16}{3}\)\(-6\)
\(\text{Đ}C\text{Đ}K\)t/m thuộc Nloạiloạiloại

vậy..............................

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

22 tháng 9 2020

Trước hết ta chứng minh BĐT

\(\frac{2k-1}{2k}< \frac{\sqrt{3k-2}}{\sqrt{3k+1}}\left(1\right)\)

Thật vậy, (1) \(\Leftrightarrow\left(2k-1\right)\sqrt{3k+1}< 2k\sqrt{3k-2}\)\(\Leftrightarrow\left(4k^2-4k+1\right)\left(3k+1\right)< 4k^2\left(3k-2\right)\)

\(\Leftrightarrow12k^3-8k^2-k+1< 12k^3-8k^2\)\(\Leftrightarrow k-1>0\left(\forall k\ge2\right)\)

Trong (1), lần lượt thay k bằng 1,2,...,n ta được:

\(\frac{1}{2}\le\frac{\sqrt{1}}{\sqrt{4}},\frac{3}{4}\le\frac{\sqrt{4}}{\sqrt{7}},....,\frac{2n-1}{2n}< \frac{\sqrt{3n-2}}{\sqrt{3n+1}}\)

Nhân từng vế các BĐT trên ta có:

\(\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{\sqrt{1}}{\sqrt{4}}.\frac{\sqrt{4}}{\sqrt{7}}...\frac{\sqrt{3n-2}}{\sqrt{3n+1}}=\frac{1}{\sqrt{3n+1}}\)

16 tháng 6 2016

a)ta có :  x+1/10+x+1/11+x+1/12=x+1/13+x+1/14

   nên x+1/10+x+1/12+x+1/12 -x+1/13 -x+1/14=0

         (x+1) (1/10+1/11+1/12-1/13-1/14) =0

   dễ thấy 1/10+1/11+1/12-1/13-1/14 >0 nên x+1=0 nên x= -1

b) x+4/2000+x+3/2001=x+2/2002+x+1/2003

nên x+4/2000+x+3/2001-x+2/2002-x+1/2003=0

nên ta cộng mỗi 1 vào mỗi phân số sau đó lấy x+2004 làm nhân tử chung 

Vì máy tính không tiện viết nên bạn cố gắng hiểu nhé

c)

A=3n+9/n-4

=3(n-4) +21/n-4

=3+21/n-4

để A thuộc Z thì n-4 thuộc Ư(21)

B= 6n+5/2n-1= 3(2n-1)+8 /2n-1

=3+8/2n-1

nên 2n-1 thuộc ước của 8

d)2x(x-1/7)=0 nên 2x=0    nên x=0

                          x-1/7 =0  nên x=1/7

11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

1 tháng 5 2019

1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)\(3n+2\)là nguyên tố cùng nhau

\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)

1 tháng 5 2019

câu 1 : 

gọi d = ƯCLN ( 2n + 1; 3n +2 )

=> 2n + 1 chia hết cho d  => 3 ( 2n +1 ) chia hết cho d

    3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d

ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4  - [ 6n + 3 ] chia hết cho d

=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau 

=> \(\frac{2n+1}{3n+2}\)  là phân số tối giản

19 tháng 5 2019

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(N< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(N< 1-\frac{1}{100}\)

\(N< \frac{99}{100}< \frac{75}{100}=\frac{3}{4}\)

19 tháng 5 2019

\(a,\)

Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)

b, Ta có :

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Mà \(3⋮n+2\Rightarrow n+2\inƯ(3)=\left\{\pm1;\pm3\right\}\)

Tự xét bảng

15 tháng 3 2018

thà chết đi còn hơn làm cái đống này mất gianroi

12 tháng 4 2017

bạn k cho mình chưa zậy ko là xóa kết bạn đây

24 tháng 4 2015

A = \(2\left(\frac{1}{10.18}+\frac{1}{18.26}+\frac{1}{26.34}+....+\frac{1}{802.810}\right)\)

\(=2.\frac{1}{8}\left(\frac{8}{10.18}+\frac{8}{18.26}+\frac{8}{26.34}+....+\frac{8}{802.810}\right)\)

\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+....+\frac{1}{802}-\frac{1}{810}\right)\)

\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}\left(\frac{81}{810}-\frac{1}{810}\right)=\frac{1}{4}.\frac{80}{810}=\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)

24 tháng 2 2016

Để  \(\frac{2n+1}{3n+2}\)là phân số tối giản thì 2n+1 và 3n+2 phải là 2 số ng.tố cùng nhau.Gọi d là ƯC của 2n+1 và 3n+2  Ta có :

\(\Rightarrow\)3(2n+1)|d và 2(3n+2)|\(\Rightarrow\)2(3n+2)-3(2n+1)|d\(\Rightarrow\)1|d

Ta thấy :1|d ngĩa là d\(\in\)Ư(1).Vậy hai số trên là ng.tố cùng nhau.Từ đó ta kết luận phân số trên là tối giản.