Cho M(x)=1+x+x^2+...+x^99
Chứng minh x.M(x)-M(x)=x^100-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)
=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi x=1
a, Từ x = 7 - 4 3 tìm được x = 2 - 3 . Thay vào Q và tính ta được Q = 3 - 3 1 + 3
b, P = 3 x + 3 9 - x
c, Tìm được
M
=
P
Q
=
-
3
x
+
3
Giải M ≥ - 2 3 ta tìm được 9 4 ≤ x ≠ 9
d, Tìm được A = x + 7 x + 3
Ta có A = x + 1 + 6 x + 3 ≥ 2 x + 6 x + 3 = 2
Từ đó đi đến kết luận A m i n = 2 => x = 1
* Cách khác: A = x + 7 x + 3 = x - 3 + 16 x + 3
= x + 3 + 16 x + 3 - 6 ≥ 2 16 - 6 = 2
=> Kết luận
Lời giải:
Hiển nhiên \(x\geq 0\)
Thay \(M=\frac{-3}{\sqrt{x}+3}\) vào biểu thức $A$ ta có:
\(A=\frac{-3x}{\sqrt{x}+3}+\frac{4x+7}{\sqrt{x}+3}=\frac{x+7}{\sqrt{x}+3}\)
Áp dụng BĐT Cauchy cho các số không âm:
\(x+1\geq 2\sqrt{x}\Rightarrow x+7\geq 2\sqrt{x}+6\)
\(\Rightarrow A=\frac{x+7}{\sqrt{x}+3}\geq \frac{2\sqrt{x}+6}{\sqrt{x}+3}=2\)
Vậy \(A_{\min}=2\Leftrightarrow x=1\)
\(M\left(x\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+...+\left(-1\right)^{100}\)
\(=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+\left(-1\right)^5+...+\left(-1\right)^{98}+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=1+\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)+1\)
\(=1\)
\(N\left(-1\right)=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)
\(=1+1+1+1+...+1\)
\(=50.1=50\)
\(M\left(-1\right)-N\left(-1\right)=1-50=-49\)
Bài 1:
Từ P(x) = 3x2+8x-4 = -4
=> 3x2+8x = 0
x(3x+8) = 0
=> x = 0 3x+8 = 0
=> x = 0 3x = 8
=> x = 8/3
Bài 2 :
Ta có x = -1 là nghiệm của đa thức f(x) = 2x2-x+m
=> f(-1) = 2(-1)2-(-1)+m = 0
=> 2+1+m = 0
=> 3+m = 0
m = 0-3
m = -3
Ta có: xm>7m
\(\Leftrightarrow xm\cdot\frac{1}{m}>7m\cdot\frac{1}{m}\)(nhân cả hai vế cho \(\frac{1}{m}\))
hay x>7