Tìm đa thức bậc nhất P(x), biết rằng P(1) = 5 và P(-1) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đa thức bậc nhất `P(x)` có dạng: `P(x) = ax + b`
Ta có: `P(1) = 5 => a + b = 5 => a = 5 - b`
`P(-1) = 1 => -a + b = 1`
`=> - ( 5 - b ) + b= 1`
`=> -5 + b + b = 1`
`=> 2b = 6`
`=> b = 3`
Thay `b = 3` vào `a = 5 - b` có: `a = 5 - 3 = 2`
Vậy đa thức `P(x) = 2x + 3`
Vì P(x) là đa thức bậc nhất nên P(x) có dạng ax+b
Ta có :
P(1)=a.1+b=a+b (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1) và (2) ta có a=b
=> Đa thức bậc nhất P(x) có dạng a(x+1)
Vì P(x) là đa thức bậc nhất nên nên P(x) có dạng ax+3
Ta có: P(1)=a.1+b=0 (1)
P(-1)=a.(-1)+b=b-a (2)
Từ (1),(2) suy ra a=b
Suy ra đa thức bậc nhất P(x) có dạng a(x+1)
1)
Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )
Ta có:
\(f\left(1\right)=a+b+c+d+e=0\) (1)
\(f\left(2\right)=16a+8b+4c+2d+e=0\) (2)
\(f\left(3\right)=81a+27b+9c+3d+e=0\) (3)
\(f\left(4\right)=256a+64b+16c+4d+e=6\) (4)
\(f\left(5\right)=625a+125b+25c+5d+e=72\) (5)
\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)
\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)
\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)
\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)
\(E=B-A=50a+12b+2c=0\)
\(F=C-B=110a+18b+2c=6\)
\(G=D-C=194a+24b+2c=66-6=60\)
Tiếp tục lấy H=F-E; K=G-F; M=H-K
Ta tìm được a
Thay vào tìm được b,c,d,e
1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e
có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n)
thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7
Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42
Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).
2. Thiếu dữ liệu
3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)
...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)
để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5
Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý
Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d
h(1) = 1 => 1 + a + b + c + d = 2
Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.
xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10
ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)
=> f(x)=(x-1)(x-2)(x-4)(x+3)
=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24
=> h(x)=x4-4x3-6x2+34x-25