K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó 

Chứng minh tứ giác có tổng 2 góc đối bằng 180° 

Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.

30 tháng 4 2021

Mỗi câu 9 à

2 tháng 8 2017

(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)


(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac) 


(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)


(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2


(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc


(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33


(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3


(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)


(14) Với n lẻ: 
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1) 


(15) Nhị thức Newton: 
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn

15 tháng 10 2023

Căn bậc hai số học của một số nguyên dương x là a sao cho 

\(\left\{{}\begin{matrix}a>0\\a^2=x\end{matrix}\right.\)

Hằng đẳng thức về căn thức là:

\(\sqrt{A^2}=\left|A\right|\)

Quy tắc:

\(\sqrt{A^2\cdot B}=\sqrt{B}\cdot\left|A\right|\)

\(\sqrt{\dfrac{A}{B}}=\dfrac{\sqrt{A}}{\sqrt{B}}\)

\(\sqrt{A\cdot B}=\sqrt{A}\cdot\sqrt{B}\)

12 tháng 1 2017

a) Các hằng đẳng thức lượng giác cơ bản:

sin2α + cos2α = 1

1 + tan2α = 1/(cos2α); α ≠ π/2 + kπ, k ∈ Z

1 + cot2α = 1/(sin2α); α ≠ kπ, k ∈ Z

tan⁡α.cot⁡α = 1; α ≠ kπ/2, k ∈ Z

b) Công thức cộng:

cos⁡(a - b) = cos⁡a cos⁡b + sin⁡a sin⁡b

cos⁡(a + b) = cos⁡a cos⁡b - sin⁡a sin⁡b

sin⁡(a - b) = sin⁡a cos⁡b - cos⁡a sin⁡b

sin(a + b) = sina.cosb + cosa.sinb

Giải bài tập Toán 11 | Giải Toán lớp 11

c) Công thức nhân đôi:

sin⁡2α = 2 sin⁡α cos⁡α

cos⁡2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α

Giải bài tập Toán 11 | Giải Toán lớp 11

d) Công thức biến đổi tích thành tổng:

cos⁡ a cos⁡b = 1/2 [cos⁡(a - b) + cos⁡(a + b) ]

sin⁡a sin⁡b = 1/2 [cos⁡(a - b) - cos⁡(a + b) ]

sin⁡a cos⁡b = 1/2 [sin⁡(a - b) + sin⁡(a + b) ]

Công thức biến đổi tổng thành tích:

Giải bài tập Toán 11 | Giải Toán lớp 11

2 tháng 4 2016

dể đa thức x^2 +2x +2 có nghiệm nên suy ra x thuộc ước của 2

thay x lần lượt suy ra pt vô nghiệm

2 tháng 4 2016

Bài này bn phải phân tích ra đưa về dạng 1 hằng đẳng thức(=(x+1)2) rồi suy ra vô nghiệm, ko nên giải theo cách khác

8 tháng 9 2021

= (x+1-y)(x+1+y)

hằng đẳng thức số 3: a^2 - b^2 = (a-b)(a+b)

8 tháng 9 2021

\(\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)

21 tháng 7 2021

công thức :

6.tổng hai lập phương :

A3 + B3 = ( A+B).(A2 - AB + B2 )

7. hiệu hai lập phương :

A3 - B3 = ( A-B).( A2+ AB + B2 )

*Sxl

21 tháng 7 2021

công thức 6.Tổng 2 lập phương

với a và b là biểu thức tùy ý ta có:A3+B3 =(A+B)(A2-AB+B2)

công thức 7:hiệu 2 lập phuong

A3-B3=(A-B)(A2+AB+B2)