Cho tam giác DEF vuông tại D CÓ DE=4cm , EF=5cm . Tính độ dài cạnh DF
Chỉ mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng PTG: \(EF=\sqrt{DE^2+DF^2}=13\left(cm\right)\)
Vì DM là trung tuyến ứng cạnh huyền EF nên \(DM=\dfrac{1}{2}EF=\dfrac{13}{2}\left(cm\right)\)
a: EF=căn DE^2+DF^2=6cm
b: Xét ΔEDF vuông tại D có sin E=DF/EF=căn 3/2
=>góc E=60 độ
ΔEDF vuông tại D có DI là trung tuyến
nên DI=IE=IF
Xét ΔIDE có ID=IE và góc E=60 độ
nên ΔIDE đều
a: DF=căn 13^2-5^2=12cm
b: DE<DF
=>góc DFE<góc DEF
c: Xét ΔFDN vuông tại D và ΔFHN vuông tại H có
FN chung
góc DFN=góc HFN
=>ΔFDN=ΔFHN
=>ND=NH
Xét ΔNDK vuông tại D và ΔNHE vuông tại H có
ND=NH
góc DNK=góc HNE
=>ΔNDK=ΔNHE
=>KN=EN
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
Xét tam giác DEF vuông tại D (gt)
\(\Rightarrow EF^2=DE^2+DF^2\)(định lí Pi-ta-go)
Mà \(\hept{\begin{cases}DE=4\left(gt\right)\\EF=5\left(gt\right)\end{cases}}\)
\(\Rightarrow5^2=4^2+DF^2\)
\(\Rightarrow25=16+DF^2\)
\(\Rightarrow DF^2=25-16=9\)
\(\Rightarrow DF=3\)(vì độ dài cạnh luôn lớn hơn 0)