tìm x,y biêt 4x = 7y và x2 + y2 = 260
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)
=>x/7=y/4 va x^2+y^2=260
Ap dung day ti so bang nhau ,ta co:
x^2/49=y^2/16=x^2+y^2/49+16=260/65=4
=>x^2/49=4 =>x^2=196 =>x=+ -14
y^2/16=4 =>y^2=64 =>y=+ -8
Mk dang con 1 cach do la dat =k
Chuc ban lam bai tot !!!!!
Do 4x = 7y => x = 7/4y
Ta có: x2 + y2 = 260
=> \(\left(\frac{7}{4}y\right)^2+y^2=260\)
=> \(\left(\frac{7}{4}\right)^2.y^2+y^2=260\)
=> \(\frac{49}{16}.y^2+y^2=260\)
=> \(y^2.\frac{65}{16}=260\)
=> y2 = \(260:\frac{65}{16}\)
=> y2 = \(260\times\frac{16}{65}\)
=> y2 = 64 = 82 = (-8)2
=> y thuộc {8 ; -8}
+ Nếu y = 8 thì x = 7/4.8 = 14
+ Nếu y = -8 thì x = 7/4.(-8) = -14
Vậy \(\hept{\begin{cases}x=14\\y=8\end{cases};\hept{\begin{cases}x=-14\\y=-8\end{cases}}}\)
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=-14 thì y=-8\(\Rightarrow x+y=\left(-14\right)+\left(-8\right)=-22\)
Với x=14 thì y=8\(\Rightarrow x+y=14+8=22\)
Ta có:4x=7y
\(\Rightarrow\)\(\frac{x}{7}\)=\(\frac{y}{4}\)
\(\Rightarrow\)\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)
AD t/c dãy các tỉ số bằng nhau,ta có
\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)=\(\frac{x^2+y^2}{49+16}\)=\(\frac{260}{65}\)=4
\(\Rightarrow\)\(x^2\)=4.49=196\(\Rightarrow\)x=\(\pm\)14
\(\Rightarrow\)\(y^2\)=4.16=64\(\Rightarrow\)y=\(\pm\)8
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Ta has: x2+y2≥2xyx ^ 2 + y ^ 2 \ ge2xyx2+y2≥2 x y
⇔2(x2+y2)≥(x+y)2\ Leftrightarrow2 \ left (x ^ 2 + y ^ 2 \ right) \ ge \ left (x + y \ right) ^ 2⇔2( x2+y2)≥( x+y )2
⇔x2+y2≥(x+y)22\ Leftrightarrow x ^ 2 + y ^ 2 \ ge \ frac {\ left (x + y \ right) ^ 2} {2}⇔x2+y2≥2( x + y )2Các bác sĩ cho biết thêm:
Áp dụng vào bài toán có:
P≤x+y(x+y)22+y+z(y+z)22+z+x(z+x)22P \ le \ frac {x + y} {\ frac {\ left (x + y \ right) ^ 2} {2}} + \ frac {y + z} {\ frac {\ left (y + z \ right ) ^ 2} {2}} + \ frac {z + x} {\ frac {\ left (z + x \ right) ^ 2} {2}}P≤2( x + y )2Các bác sĩ cho biết thêm:x + yCác bác sĩ cho biết thêm:+2( y + z )2Các bác sĩ cho biết thêm:y + zCác bác sĩ cho biết thêm:+2( z + x )2Các bác sĩ cho biết thêm:z + xCác bác sĩ cho biết thêm: =2x+y+2y+z+2z+x=12(4x+y+4y+z+4z+x)= \ frac {2} {x + y} + \ frac {2} {y + z} + \ frac {2} {z + x} = \ frac {1} {2} \ left (\ frac {4} {x + y} + \ frac {4} {y + z} + \ frac {4} {z + x} \ right)=x + y2Các bác sĩ cho biết thêm:+y + z2Các bác sĩ cho biết thêm:+z + x2Các bác sĩ cho biết thêm:=21Các bác sĩ cho biết thêm:(x + y4Các bác sĩ cho biết thêm:+y + z4Các bác sĩ cho biết thêm:+z + x4Các bác sĩ cho biết thêm:)
Áp dụng BĐT Svacxo ta có:
4x+y≤1x+1y\ frac {4} {x + y} \ le \ frac {1} {x} + \ frac {1} {y}x + y4Các bác sĩ cho biết thêm:≤x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:, 4y+z≤1y+1z\ frac {4} {y + z} \ le \ frac {1} {y} + \ frac {1} {z}y + z4Các bác sĩ cho biết thêm:≤y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:, 4z+x≤1z+1x\ frac {4} {z + x} \ le \ frac {1} {z} + \ frac {1} {x}z + x4Các bác sĩ cho biết thêm:≤z1Các bác sĩ cho biết thêm:+x1Các bác sĩ cho biết thêm:
Do đó: P≤12[2.(1x+1y+1z)]=2016P \ le \ frac {1} {2} \ left [2. \ left (\ frac {1} {x} + \ frac {1} {y} + \ frac {1} {z} \ right) \ right ] = 2016P≤21Các bác sĩ cho biết thêm:[ 2 .(x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:) ]=2 0 1 6
Dấu "=" ⇔x=y=z=1672\ Leftrightarrow x = y = z = \ frac {1} {672}⇔x=y=z=6 7 21Các bác sĩ cho biết thêm:
P / s: Dấu "=" không chắc lắm :))
Học tốt đêý nhá
ta có 5x=7y=3z= \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
ADTC dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra:
\(\frac{x^2}{25}=9\Rightarrow x^2=25.9\Rightarrow x^2=225\Rightarrow x^2=15^2\Rightarrow x=15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49\Rightarrow y^2=441\Rightarrow y^2=21^2\Rightarrow y=21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9\Rightarrow z^2=81\Rightarrow z^2=9^2\Rightarrow z=9\)
Vậy x = 15;y=21;z=9
Ta có : \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Leftrightarrow\frac{x^2}{49}=\frac{y^2}{16}\) và \(x^2+y^2=260\)
Áp dụng t/c của dãy tỉ số = nhau, ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
Khi đó : \(\frac{x^2}{49}=4\Rightarrow x=+-14\)
\(\frac{y^2}{16}=4\Rightarrow y=+-8\)
Vậy ___________________________