Chứng minh rằng nếu d+2c+4b chia hết cho 8 thì abcd chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
CMR: (d+2c+4b)chia hết cho 8 thì abcd chia hết cho 8
Ta có: abcd = a. 1000 + b. 100 + c.10 + d
= 1000a + 96b + 8c + (4b + 2c + d)
Dễ thấy 1000 a ; 96b và 8c đều chia hết cho 8 => Nếu (d + 2c + 4b) chia hết cho 8 thì abcd chia hết cho 8 (ĐPCM)
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Ta có:
abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)
Mà d + 2c + 4b chia hết cho 8 theo đề bài
Và 1000a + 96b + 8c cũng chia hết cho 8
=> abcd chia hết cho 8
a) Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)
Nếu p có dạng 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3 ( k + 2 ) là hợp số
=>p không có dạng 3k + 2
=>p có dạng 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3 ) là hợp số ( đpcm )
b)
Ta có:
abcd =1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = ( 1000a + 96b + 8c ) + ( d + 2c + 4b ) = 8 ( 125a + 12b + c ) + ( d + 2c + 4b )
Vì 8 ( 125a + 12b + c ) chia hết cho 8
Mà ( d + 2c + 4b ) chia hết cho 8
=> 8 ( 125a + 12b + c ) + ( d + 2c + 4b ) chia hết cho 8
hay abcd chia hết cho 8 ( đpcm )
Ta có abcd = 1000a + 100b + 10c + d
= 1000a + 96b + 8c + (d + 2c + 4b)
Ta thấy 1000a chia hết cho 8, 96a chia hết cho 8, 8c chia hết cho 8, d+2c+4b chia hết cho 8 (giả thuyết)
Vậy abcd chia hết cho 8 (đpcm)
Ta có: abcd = 1000a + 100b + 10c + d
abcd = 1000a + 96b + 4b + 8c + 2c + d
abcd = 1000a + 96b + 8c + ( 4b + 2c + d )
Ta thấy: 1000a = 8.125.a chia hết cho 8
96b = 8.12.b chia hết cho 8
8c chia hết cho 8
( 4b + 2c + d ) chia hết cho 8 ( gt )
=> 100a + 96b + 8c + ( 4b + 2c + d ) chia hết cho 8
=> abcd chia hết cho 8
=> Đpcm