So sánh x,y biết a>b>0
x=\(\frac{a+1}{a^2+a+1}\)
y=\(\frac{b+1}{b^2+b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
\(A-B=\left(ax+by\right)^2-\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(=a^2x^2+2axby+b^2y^2-a^2x^2-a^2y^2-b^2x^2-b^2y^2\)
\(=-\left(a^2y^2-2axby+b^2x^2\right)\)
\(=-\left(ay-bx\right)^2\le0\)
\(\Rightarrow A\le B\) dấu "=" xảy ra \(\frac{a}{x}=\frac{b}{y}\)
Xét \(\frac{a}{x}=\frac{2}{\left(\frac{8}{11}\right)}=\frac{11}{4};\frac{b}{y}=\frac{\left(-1\right)}{\left(-\frac{5}{11}\right)}=\frac{11}{5}\Rightarrow\frac{a}{x}\ne\frac{b}{y}\)
Vậy \(A< B\)