K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+)Ta có:a+b\(⋮\)c

               a+c\(⋮\)b

              b+c\(⋮\)a

=>(a+b)+(a+c)+(b+c)\(⋮\)a+b+c

=>a+b+a+c+b+c\(⋮\)a+b+C

=>2a+2b+2c\(⋮\)a+b+c

=>2.(a+b+c)\(⋮\)a+b+c

=>a+b+c\(⋮\)2

Th1:a=2;b và c là số nguyên tố lẻ chì chia hết cho 2

TH2:a và c là số nguyên tố lẻ;b=2

TH3:a và b là số nguyên tố lẻ,c=2

Vậy cả 3 TH trên đều thỏa mãn

Chúc bn học tốt

15 tháng 4 2020

DÊ vcl

12 tháng 9 2016

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

tích mik nhé

12 tháng 9 2016

Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.

Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
 

\

Gọi UCLN của a-c và b-c là d 
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương

15 tháng 9 2016

Gọi ƯCLN của a‐c và b‐c là d

Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1

Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2

﴾ p; q là các số nguyên﴿

c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.

24 tháng 1 2016

nhấn vào đúng 0 sẽ ra đáp án

olm-logo.png

24 tháng 1 2016

đừng tích bạn ấy lừa đó

avt431687_60by60.jpg

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ