6. CMR : (-x)2n =x2n
(-x)2n+1=-x2n+1
7. CMR : A= 111...1222...2 ( n chữ số 1, n chữ số 2 ) là tích của 2 số tự nhiên lien tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR số:11....122....2(có 2n chữ số gồm n chứ số 1 và n chữ số 2) là tích của 2 số tự nhiên liên tiếp
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
B = 11...100..00 + 22...22 (có n số 1; n số 0 và n số 2)
= 11..1 . 10n + 2. 11...1 (có n số 1)
= 11..1 . (10n + 2) (1)
Đặt 11..1 = k => 9k = 99...9 => 9k + 1 = 100...00 = 10n
Thay vào (1) ta được B = k. (9k + 1 + 2) = k. (9k +3) = 3k.(3k +1)
Vì 3k; 3k +1 là 2 số tự nhiên liên tiếp => đpcm
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
hứng tỏ rằng số sau là tích của 2 số tự nhiên liên tiếp:111...1222...2(với n chư số 1 và n chữ số 2)
Ta có : 1111...111222...222(n chữ số 1 và n chữ số 2)
= 111...111 . 100..000 + 222....22(n chữ số 1, n chữ số 0 và n chữ số 2)
= 111...111 .100...000 + 2. 111...111( n chữ số 1 và n chữ số 0)
= 111...111 . ( 100...000 + 2) (n chữ số 1 và n chữ số 0)
= 111....111 . 100...002 ( n chữ số 1 và n chữ số 0)
Vậy....