tìm gtnn m=x^2+y^2-xy-x+y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+y^2-xy-x-y+1\)
\(\Rightarrow2M=2x^2+2y^2-2xy-2x-2y+2\)
\(\Rightarrow2M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\)
\(\Rightarrow2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2>0\)
\(\Rightarrow M>0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-y=0\\x-1=0\\y-1=0\end{cases}}\Rightarrow x=y=1\)
\(xy\ge2\left(y-1\right)\ge0\Rightarrow x\ge\dfrac{2\left(y-1\right)}{y}\ge0\)
\(\Rightarrow M\ge\dfrac{\dfrac{4\left(y-1\right)^2}{y^2}+4}{y^2+1}=4.\dfrac{\left(y-1\right)^2+y^2}{y^2\left(y^2+1\right)}\)
\(\dfrac{M}{4}\ge\dfrac{2y^2-2y+1}{y^4+y^2}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{\left(2-y\right)\left(y^3+2y^2-3y+2\right)}{4\left(y^4+y^2\right)}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow M\ge1\)
Dấu "=" xảy ra khi \(y=2;x=1\)
\(4M=\left(2x-y-1\right)^2+\left(3y^2+2y+3\right)\)
\(4M=\left(2x-y-1\right)^2+\left[\left(\sqrt{3}y\right)^2+2.\sqrt{3}y.\frac{1}{\sqrt{3}}+\frac{1}{3}\right]+\frac{8}{3}\)
\(4M=\left(2x-y-1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{8}{3}\)
\(GTNN\left(M\right)=\frac{2}{3}\)
\(khi...y=-\frac{1}{3};x=\frac{1}{3}\)
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
Ta có \(A=\left(x^2+2\right)\left(y^2+2\right)=\left(xy\right)^2+2x^2+2y^2+4\)
\(=\left(xy\right)^2+2\left(x+y\right)^2-4xy+4\)\(=\left(2m+1\right)^2+2\left(m-2\right)^2-4\left(2m+1\right)+4\)
\(=4m^2+4m+1+2m^2-8m+8-8m-4+4\)
\(=6m^2-12m+9=6\left(m^2-2m+1\right)+3\)
Ta thấy \(6\left(m-1\right)^2\ge0\Rightarrow6\left(m-1\right)^2+3\ge3\Rightarrow A\ge3\)
Vậy Min A=3 khi m-1=0 hay m=1
\(M=2x^2+2y^2-2xy-2x+2y+2\)
\(=\left[\left(x^2-2xy+y^2\right)-\frac{4}{3}\left(x-y\right)+\frac{4}{9}\right]+\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{4}{3}\)
\(=\left(x-y-\frac{2}{3}\right)^2+\left(x-\frac{1}{3}\right)^2+\left(y+\frac{1}{3}\right)^2+\frac{4}{3}\ge\frac{4}{3}\)
\(\Rightarrow M\ge\frac{2}{3}\)
\(M=x^2+y^2-xy-x+y+1\)
\(4M=4x^2+4y^2-4xy-4x+4y+1\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-4x+4y+1\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+3\left(y^2+2y+1\right)-3\)
\(4M=\left(2x-y-1\right)^2+3\left(y+1\right)^2-3\)
Mà : \(\left(2x-y-1\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\Rightarrow3\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow4M\ge-3\)
\(\Leftrightarrow M\ge-\frac{3}{4}\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}2x-y-1=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-y=1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(M_{Min}=-\frac{3}{4}\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)