K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

=x3+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)=0<=>x=-1 hoặc x=-3

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

4 tháng 8 2018

\(4x^2+4x-3=0\)

\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)

\(\left(2x+1\right)^2-2^2=0\)

\(\left(2x+1-2\right).\left(2x+1+2\right)=0\) 

\(\left(2x-1\right).\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

\(x^4-3x^3-x+3=0\)

\(x^3.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right).\left(x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

\(x^2.\left(x-1\right)-4x^2+8x-4=0\)

\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)

\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)

\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)

\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)

\(\left(x-1\right).\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(\begin{cases}x=1\\x=2\end{cases}\)

Tham khảo nhé~

26 tháng 11 2016

a) \(x^3+4x=0\)

\(\Rightarrow x\left(x^2+4\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2+4=0\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x^2=-4\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x\in\phi\end{array}\right.\)

Vậy: \(x=0\)

b) \(2\left(5-x\right)=4x-3\)

\(\Rightarrow10-2x=4x-3\)

\(\Rightarrow10+3=4x+2x\)

\(\Rightarrow13=6x\)

\(\Rightarrow x=\frac{13}{6}\)

 

26 tháng 11 2016

x3+ 4x=0

<=> x(x2+4)=0

=> x=0 hoặc x2+4=0

Mà: x2+4 >4

=>x=0

1 tháng 8 2023

`4x(x-5)-(x-1) (4x-3)-5=0`

`=> 4x*x - 4x*5 - ( x*4x-3*x-1*4x+ 1*3) -5=0`

`=> 4x^2 - 20x-(4x^2 -3x-4x+3)-5=0`

`=>  4x^2 - 20x-4x^2+3x+4x-3-5=0`

`=>-13x-8=0`

`=> -13x=8`

`=> x=-8/13`

Vậy `x=-8/13`

1 tháng 8 2023

`4x(x-5)-(x-1)(4x-3)-5 = 0`

`=> 4x^2 - 20x - (4x^2 -3x-4x+3)= 5`

`=> 4x^2 - 20x - 4x^2 + 3x + 4x -3 = 5`

`=> (4x^2 - 4x^2) - (20x - 3x - 4x) = 8`

`=> -13x = 8`

`=> x    = -8/13`

 

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

21 tháng 7 2023

\(a,3\sqrt{x}-7=0\left(dk:x\ge0\right)\\ \Leftrightarrow3\sqrt{x}=7\\ \Leftrightarrow\sqrt{x}=\dfrac{7}{3}\\ \Leftrightarrow x=\dfrac{49}{9}\left(tmdk\right)\)

Vậy \(S=\left\{\dfrac{49}{9}\right\}\)

\(b,\sqrt{x-2}+\sqrt{4x-8}=3\left(dk:x\ge2\right)\\ \Leftrightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}=3\\ \Leftrightarrow\sqrt{x-2}+2\sqrt{x-2}=3\\ \Leftrightarrow3\sqrt{x-2}=3\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\\ \Leftrightarrow x=3\left(tmdk\right)\)

Vậy \(S=\left\{3\right\}\)

a: =>3*căn x=7

=>căn x=7/3

=>x=49/9

b: =>3*căn x-2=3

=>căn x-2=1

=>x-2=1

=>x=3

19 tháng 8 2021

b. \(x^3+4x=0\)

\(\Leftrightarrow x\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-4\end{matrix}\right.\) \(\Leftrightarrow x=0\) ( vì \(x^2\ge0\forall x\) )

Vậy \(x=0\)

19 tháng 8 2021

\(x^3+4x=0\)

\(\Leftrightarrow x\left(x^2+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-4\left(VL\right)\end{matrix}\right.\)

\(\Leftrightarrow x=0\)

Vậy x=0