Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu x-y+z=0 thì xy+yz+xz\(\ge\)
Giúp với!!!
\(\ge\)0 nhá
Ta có: \(x-y+z=0\) \(\Rightarrow\left(x-y+z\right)^2=0 \) \(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\) \(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\) \(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\) \(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\) \(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\) \(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)Mà: \(x^2+y^2-z^2\ge0\)\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)\(\Rightarrow xy+yz-xz\ge0\)(đpcm) Vậy: \(xy+yz-xz\ge0\)
\(\ge\)0 nhá
Ta có: \(x-y+z=0\)
\(\Rightarrow\left(x-y+z\right)^2=0 \)
\(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
\(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
\(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
\(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
\(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
\(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
Vậy: \(xy+yz-xz\ge0\)