K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

https://olm.vn/hoi-dap/question/82518.html

21 tháng 4 2018

Ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)

 \(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

 \(=4+2\frac{b}{a}+2\frac{a}{b}+1\)      

  \(=5+2\left(\frac{b}{a}+\frac{a}{b}\right)\)

Áp dụng bdt Cô - si ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge5+2.2=9\)

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

9 tháng 9 2018

Đáp án A

Ta có:  P = log a b b a = 2 log a b b a

= 2 log a b b − log a b a = 2 1 log b a b − 1 2 log a b a

= 2 1 1 + log b a − 1 2 . 1 log a a b = 2 1 1 + 1 log a b − 1 2 . 1 1 + log a b = 2 1 1 + 1 5 − 1 2 . 1 1 + 5 = 11 − 3 5 4

10 tháng 4 2019

Đáp án A

Ta có

P = log a b b a = 2. log a b b a = 2 log a b b − log a b a = 2 1 log b a b − 1 2 log a b a

= 2 1 1 + log b a − 1 2 . 1 log a a b = 2 1 1 + 1 log a b − 1 2 . 1 1 + log a b = 2 1 1 + 1 5 − 1 2 . 1 1 + 5 = 11 − 3 5 4 .

15 tháng 12 2018

Đáp án A

Ta có

b: 

Input: a,b

Output: UCLN(a,b)

26 tháng 10 2016

Ta có : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\Leftrightarrow ab+a+b+1\ge9ab\) ( vì \(ab>0\) )

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) ( vì \(a+b=1\) )

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\) ( Vì \(a+b=1\) ) \(\Leftrightarrow\left(a-b\right)^2\ge0\left(2\right)\)

BĐT ( 2 ) đúng , mà các phép biến đổi trê tương đương , vây BĐT ( 1 ) được chứng minh . Xảy ra đẳng thức khi và chỉ khi \(a=b\)

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

27 tháng 8 2021

\(M=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2.\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16.\dfrac{\left(a+b\right)^2}{4}}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

dấu = xảy ra khi x=y=2

tick mik nha

27 tháng 8 2021

Ta có bất đẳng thức phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\le\dfrac{1}{4}\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương:

\(ab+\dfrac{1}{ab}=16ab+\dfrac{1}{ab}-15ab\ge2\sqrt{16ab.\dfrac{1}{ab}}-15.\dfrac{1}{4}=8-\dfrac{15}{4}=\dfrac{17}{4}\)