Cho tam giác ABC, trung tuyến AM, trên tia AM lấy điểm A' sao cho MA=MA'. CM
a.) Tam giác BMA'=CMA
b.(AB+AC-BC)/2 < AM< (AB+AC)/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔDCM có
MB=MC(M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MA=MD(gt)
Do đó: ΔABM=ΔDCM(c-g-c)
b) Ta có: ΔABM=ΔDCM(cmt)
nên AB=CD(Hai cạnh tương ứng)
mà AB<AC(gt)
nên CD<AC
Xét ΔACD có
CD<AC(cmt)
mà góc đối diện với cạnh CD là \(\widehat{CAD}\)
và góc đối diện với cạnh AC là \(\widehat{ADC}\)
nên \(\widehat{CAD}< \widehat{ADC}\)(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\Leftrightarrow\widehat{CAM}< \widehat{MDC}\)
mà \(\widehat{BAM}=\widehat{MDC}\)(ΔABM=ΔDCM)
nên \(\widehat{BAM}>\widehat{CAM}\)(đpcm)
Giải
a)Vì BAIˆ=90o+ABCˆ(vì là góc ngoài của tam giác ABH)
Và EBCˆ=90o+ABCˆ.
=>BAIˆ=EBCˆ
Xét tam giác ABI và tam giác BEC có:
EB=AB(gt)
AI=BC(gt)
BAIˆ=EBCˆ(c/m trên)
=> Tam giác ABI bằng tam giác BEC(c.g.c)
b)Gọi giao điểm của IH và EC là K,giao điểm của IB và EC là O
Vì tam giác ABI=Tam giác BEC(c/m trên)=>IB=EC(hai cạnh tương ứng)
Và BIHˆ=ECBˆ(hai góc tương ứng)(1)
Và HKCˆ=EKIˆ(đđ)(2)
Mà HKCˆ+KCHˆ=90o(xét trong tam giác vuông KHC vuông tại H)(3)
=>Từ (1),(2) và (3)=>BIHˆ+EKIˆ=90o
Xét trong tam giác OIK có hai góc BIH và góc EIK=>IOCˆ=90o
hay IO vuông góc với EC hay IB vuông góc với EC.
c)Ta cũng dễ dàng c/m tương tự rằng IC vuông góc với BF theo c/m tương tự như câu b.
Vậy 3 đường thẳng IH,BF,CE đều là 3 đường cao của tam giác IBC,Vậy 3 đường này đồng quy theo tính chất.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
( Thông cảm hình bị lệch )
a) + Xét \(\Delta ABC\)và \(\Delta DMC\)có :
AM = DM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)( vì là hai góc đối đỉnh ) => \(\Delta AMB=\Delta DMC\)
MB = MC ( AM là trung tuyến của \(\Delta ABC\))
=> \(\widehat{B}=\widehat{MCD}\)( hai góc tương ứng )
=> DC // AB ( có hai góc so le trong = )
Mà AB \(\perp\)AC ( Vì \(\Delta ABC\)vuông tại A)
=> DC _|_ AC
+ Xét \(\Delta BEC\)có :
M là trung điểm của cạnh BC ( Vì AM là trung tuyến của ABC )
=> EM là trung tuyến
A là trung điểm của BE ( Vì EA = AB ) => CA là trung tuyến
Mà EM cắt AC tại N => N là trọng tâm của \(\Delta ABC\)
\(\Rightarrow NC=\frac{2}{3}CA\Rightarrow NC=2NA\)
+ Ta có \(\Delta AMB=\Delta DMC\Rightarrow AB=CD\)
Xét \(\Delta ACD\)có :
CD + AC > AD ( bđt tam giác ) . Mà CD = AB ; AD = 2AM
=> \(AB+AC>2AM\Leftrightarrow\frac{AB+AC}{2}>AM\)(1)
+ Xét \(\Delta AMB\)có : AM > AB - BM
\(\Delta AMC\)có : AM > AC - CM
=> 2AM > AB + AC - BM - CM
<=> 2AM > AB + AC - (BM +CM )
<=> 2AM > AB + AC - BC
<=> AM > \(\frac{AB+AC-BC}{2}\)(2)
Từ (1), (2) => Điều cần cm trên đề bài .