K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

cho mình bổ sung là P=3(a+b)+ab

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:

$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$

$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$

NV
27 tháng 7 2021

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

17 tháng 11 2016

Ta có 

A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)

= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)

Ta lại có

1 = a2 + b2 \(\ge\)2ab

\(\Rightarrow ab\le\frac{1}{2}\)(2)

Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi a2 = b2 = 0,5

Giá trị lớn nhất không có

2 tháng 8 2023

Từ điều kiện �2+�2=2, ta có (�+�)2−2��=2⇒��=12(�+�)2−1.

Đặt �=�+�.

Khi đó �=3�+12�2−1=12(�+3)2−112.

Ta có (�+�)2≤2(�2+�2)⇒�2≤4⇒−2≤�≤2.

Do đó �+3≥1⇒(�+3)2≥1⇒�≥−5.

Dấu bằng xảy ra khi �=�=−1.

Vậy giá trị nhỏ nhất của  là −5.

NV
1 tháng 8 2021

\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Lại có:

\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)

\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)

Do đó:

\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)

\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)

\(Q^2\ge4\left(a+b+c\right)\ge4\)

\(\Rightarrow Q\ge2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

1 tháng 8 2021

hàng đầu tiên tìm MaxQ áp dụng bđt nào thế thầy?

21 tháng 5 2023

Giả sử \(a\ge b\ge c\)

\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\) 

\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\) 

\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)

\(\ge12\)

ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)

 

21 tháng 5 2023

Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị

11 tháng 4 2019

Áp dụng BĐT Bun-hia-cop-xki ta có:

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)

Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)

11 tháng 4 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(=4-2\left(ab+bc+ca\right)\)

Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min