K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy phương trình có tập nghiệp  \(S=\left\{3;-1\right\}\)

16 tháng 12 2021

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

16 tháng 12 2021

anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

15 tháng 9 2023

1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)

\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)

Ta có :

\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)

\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)

\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)

\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)

Vậy phương trình cho vô nghiệm

19 tháng 4 2019

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

18 tháng 2 2021

Ta có: \(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: S={3;-1}

Ta có: \(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy...

Ta có: \(x^2-2x+1-4=0\)

\(\Leftrightarrow\left(x-1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: S={3;-1}

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

10 tháng 2 2018

a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27

⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27

⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29

⇔ -2x – 3x = 24 – 29

⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1

Tập nghiệm của phương trình : S = {1}

b) x2 – 4 – (x + 5)(2 – x) = 0

⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0

⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0

⇔ x = 2 hoặc x = -7/2

Tập nghiệm của phương trình: S = {2; -7/2 }

c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)

⇔ x ≠ 2 và x ≠ -2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4

⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {1/2}

d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)

⇔ x ≠ 1 và x ≠ -3

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0

⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = ∅

15 tháng 5 2021

\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)

\(< =>2x^2-2x-24=2x^2+3x-2-27\)

\(< =>5x=-24+29=5\)

\(< =>x=\frac{5}{5}=1\)