Cho a < 0 Tìm min của \(P=a^3+4a+15+\frac{36a+81}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(a^2+4a+12\right)+\left(\dfrac{36a+81}{a^2}+3\right)\)
\(=\left(a+1\right)\left(a+3\right)+\dfrac{3\left(a+9\right)\left(a+3\right)}{a^2}+9\)
\(=\left(a+3\right)\left(\left(a+1\right)+\dfrac{3\left(a+9\right)}{a^2}\right)+9\)
\(=\left(a+3\right)^2\left(a^2-2a+9\right)+9\ge9\)
\("="\Leftrightarrow a=-3\)
\(P=\dfrac{1}{6-4a}+\dfrac{4}{4a}\ge\dfrac{\left(1+2\right)^2}{6-4a+4a}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(\dfrac{6-4a}{1}=\dfrac{4a}{2}\Rightarrow a=1\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
Theo đề +áp dụng cô si ,ta có:
\(1\ge2a+3b\ge2\sqrt{6ab}\\ \Rightarrow ab\le\frac{1}{24}\)(1)
ÁP dụng cô si cho 2 số ko âm ,ta có:
\(4a^2+9b^2\ge12ab\)(2)
Thay (1),(2) vào ,ta có:
\(36a^2b^2\left(4a^2+9b^2\right)\le36\cdot\frac{1}{24^2}\cdot12\cdot\frac{1}{24}=\frac{1}{32}\)
đến đây thì xong oy
Học tốt nha
^-^