giúp mk giải bài này vs:"Chứng minh rằng 2^2^(2n+1) + 31 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết n+1 số đã cho dưới dạng :
a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1
trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1
Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq
Khi đó apap và aqaq có 1 số là bội của số kia
đúng nhớ k cho mình 1 cái nha chúc bn hok tốt
= 6^(2n+1) + 5^(n+2)
=36^n×6+5^n×25
=36^n×6+5^n(31-6)
=36^n×6+5^n×31-5^n×6
=6(36^n-5^n)+5^n×31
=6.31(36^(n-1)+...+5^(n-1))+5^n×31
=[6(36^(n-1)+...+5^(n-1))+5^n] ×31
=> 6^(2n+1) + 5^(n+2) chia hết cho 31
a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì => x^2 =1 (mod 8)
x^2 =-1(mod 5) hoặc x^2=0(mod 5)
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
acswrdwrdewredryrfgytrutyut
jrhjrhejhtrttt
gjgrhgwerhj34wr
hfurjr34.wtb4wg5
Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3
=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2
Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS
=>(a+b):2 là HS
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2
câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ
mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha
hộ
đặt M là n^3 -9n^2+2n.
TH1 : n có dạng 2k => M chia hết cho 2 (bạn tự cm)
TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n
=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)
Xét n có dạng 3k => M chia hết cho 3
Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3
Tương tự bạn xét n =3k+2....
=> M chia hết cho 3 vs mọi n (2)
Từ (1) và (2) => M chia hết cho 6