K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

Viết n+1 số đã cho dưới dạng : 

a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1

trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1

Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq

Khi đó apap và aqaq có 1 số là bội của số kia

đúng nhớ k cho mình 1 cái nha chúc bn hok tốt

12 tháng 8 2016

\(6^{2n+1}+5^{n+2}=6\left(36^n-5^n\right)+31.5^n\)

10 tháng 12 2017

= 6^(2n+1) + 5^(n+2) 
=36^n×6+5^n×25 
=36^n×6+5^n(31-6) 
=36^n×6+5^n×31-5^n×6 
=6(36^n-5^n)+5^n×31 
=6.31(36^(n-1)+...+5^(n-1))+5^n×31 
=[6(36^(n-1)+...+5^(n-1))+5^n] ×31
=>  6^(2n+1) + 5^(n+2) chia hết cho 31

18 tháng 6 2016

a=b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức 
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì => x^2 =1 (mod 8) 
x^2 =-1(mod 5) hoặc x^2=0(mod 5) 
Nếu x chẵn thì x^2=-1(mod 5) hoặc x^2 =1(mod 5) hoặc x^2=0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 

17 tháng 4 2016

acswrdwrdewredryrfgytrutyut

jrhjrhejhtrttt

gjgrhgwerhj34wr

hfurjr34.wtb4wg5  

31 tháng 5 2021

Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3

=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2

Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS

=>(a+b):2 là HS

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

17 tháng 4 2016

câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2

câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ

mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha

hộ

28 tháng 10 2017

ý bn là chia hết cho 31 hả ?

28 tháng 10 2017

đây là câu chia hết cho 31 nhé , em ghi nhầm

17 tháng 8 2018

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

17 tháng 8 2018

còn cách lm khác k bạn?