Cho tam giác ABC có \(\widehat{A}>90\) độ và điểm M nằm bên trong tam giác.
CMR: Tồn tại một điểm E trên cạnh BC sao cho \(\widehat{BME}=90\) độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,Gọi I là giao điểm của BC và ED
Xét ∆AED và ∆ABC có:
+AB=AD(gt)
+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)
+AC=AE(gt)
\(\Rightarrow\)∆AED=∆ABC(ch-cgv)
\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)
Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)
\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)
\(\Rightarrow\)∆BIE vuông tại I
\(\Rightarrow DE\perp BC\)
a) \(\Delta ABD=\Delta EBD\left(c.g.c\right)\Rightarrow DA=DE\)
b) Vì \(\Delta ABD=\Delta EBD\) nên \(\widehat{A}=\widehat{BED}\). Do \(\widehat{A}=90^0\) nên \(\widehat{BED}=90^0\)