Cho tam giác ABC vuông tại A (AB<AC) . Tia phân giác của góc A cắt BC tại D . Trên cạnh AC lấy điểm M sao cho AM=AB. Gọi giao điểm của AB và MD là E , giao của AD và CE là H .
a) CMR : BD=DM
b) CMR:tam giác DBE = tam giác MDC
c) CMR:2AH = EC
d) Tìm thêm điều kiện của tam giác ABC để điểm D là điểm nằm trong tam giác AEC và cách đều ba cạnh của tam giác AEC
hình các bn tự vẽ nhé(mog các bn thông cảm máy mk ko vẽ dc hình)
a, Xét tam giác BDA và tam giác MDA,có
AD cạnh chung
góc BAD=góc MAD (vì AD là tia phân giác của góc A)
BA=MA(gt)
Do đó tam giác BDA= tam giác MDA(c-g-c)
Suy ra BD=MD(2 cạnh tương ứng)
b,
TA có :góc ABD+góc DBE= 180 độ
góc AMD + góc DMC =180 độ
Mà góc ABD= góc AMD (cmt)
suy ra góc DBE= góc DMC
Xét tam giác BDE và tam giác MDC ,có:
góc BDE=góc MDC(2 góc đối đỉnh)
BD=MD(cmt)
góc DBE= góc DMC(cmt)
Do đó tam giác BDE =tam giác MDC (g-c-c)
s c,d mk đang nghĩ chưa ra kết quả khi nào ra mk giải tiếp heheh thông cảm
ko biết
sorry , I don 't no
Kb nhé