Cho B = 2 + 22+23+.....+230. CMR B chia hết 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
Tổng B có số số hạng là (299-21)/1+1=279( số hạng)
Giá trị của tổng B là \(\frac{\left(299+21\right).279}{2}=44640\)
Vì 44640\(⋮\)3 nên B\(⋮\)3 (đpcm)
Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
Số số hạng của A:
90 - 1 + 1 = 90 (số)
Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng
Ta có:
A = 2¹ + 2² + 2³ + ... + 2⁹⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁸⁸.7
= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7
Vậy A ⋮ 7
b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹
⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)
= 2⁹¹ - 2
Ta có :
\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{2009}.3\)
\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)
Ta có :
\(2+2^2+2^3+2^4+....+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+....+2^{2008}.7\)
\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)
Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
Ta có : 21 = 3 . 7
Mà 3 và 7 nguyên tố cùng nhau
=> B \(⋮\)21 khi B \(⋮\)3 và B \(⋮\)7
\(\Rightarrow B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(\Rightarrow B=2.\left(2^0+2^1\right)+2^3.\left(2^0+2^1\right)+...+2^{29}.\left(2^0+2^1\right)\)
\(\Rightarrow B=2.3+2^3.3+...+2^{29}.3\)
\(\Rightarrow B=3.\left(2+2^3+...+2^{29}\right)⋮3\)( 1 )
\(\Rightarrow B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(\Rightarrow B=2.\left(2^0+2^1+2^2\right)+2^4.\left(2^0+2^1+2^2\right)+...+2^{28}.\left(2^0+2^1+2^2\right)\)
\(\Rightarrow B=2.7+2^4.7+...+2^{28}.7\)
\(\Rightarrow B=7.\left(2+2^4+...+2^{28}\right)⋮7\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow B⋮3.7\)
\(\Rightarrow B⋮21\)
B= 2+ 22+ 23+...+ 229+ 230.
B có số các số hạng là:
( 30- 1): 1+ 1= 30( số)
* Ta ghép 2 số hạng vào 1 nhóm được 15 nhóm.
=> B=( 2+ 22)+( 23+ 24)+( 25+ 26)+...+( 227+ 228)+( 229+ 230).
=> B= 2( 1+ 2)+ 23( 1+ 2)+ 25( 1+ 2)+...+ 227( 1+ 2)+ 229( 1+ 2).
B= 2. 3+ 23. 3+ 25. 3+...+ 227. 3+ 229. 3.
B= 3( 2+ 23+ 25+...+ 227+ 229)\(⋮\)3.
=> B\(⋮\) 3( 1)
* Ta ghép 3 số hạng vào 1 nhóm được 10 nhóm.
=> B=( 2+ 22+ 23)+( 24+ 25+ 26)+( 27+ 28+ 29)+...+( 225+ 226+ 227)+( 228+ 229+ 230).
B= 2( 1+ 2+ 22)+ 24( 1+ 2+ 22)+ 27( 1+ 2+ 22)+...+ 225( 1+ 2+ 22)+ 228( 1+ 2+ 22).
B= 2. 7+ 24. 7+ 27. 7+...+ 225. 7+ 228. 7.
B= 7( 2+ 24+ 27+...+ 225+ 228)\(⋮\) 7.
=> B\(⋮\) 7( 2).
( 3; 7)= 1( 3).
Từ( 1);( 2);( 3)
=> B\(⋮\) 21.
=> đpcm.