K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

Xét tứ giác \(HECD\) có :

\(HEC=90^0\) ( Vì \(BE\)\(AC\) ) 

\(HDC=90^0\) ( Vì \(AD\)\(BC\) )

Mà 2 góc này đối nhau do đó :

 Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)

Tương tự :

Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))

=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)

Ta lại có :

\(CFB=\) ∠\(BEC\) \(=90^0\)

Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :

Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)

Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)

 

 

13 tháng 6 2021

dùng kiến thức lớp 7 được ko anh

 

27 tháng 4 2021

Ta có: AEH=90⁰.

=>HAE+AHE=90⁰.(1)

Ta có: ∆BHD vuông tại D.

=>DBH+BHD=90⁰.(2)

Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.

Mà: AHE=DBH (2 góc đối đỉnh).

=> HAE=DBH.

=>HAE=DBE.

=>∆HEA~CBE(g.g).

=>AE/BE=HE/CE.

=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².

=> (AE+CE)²=4AE.CE.

=>(AE-CE)²=0.

=>AE=CE 

=> E là trung điểm của AC 

=> BE là đường trung tuyến của ∆ABC 

Mà: BE là đường cao của ∆ABC.

=> ∆ABC cân tại B.

 

 

 

 

 

 

12 tháng 3 2021

Gọi G là giao điểm của FC và AK.

Áp dụng định lý Menelaus cho tam giác FBC với cát tuyến A, G, K ta có:

\(\dfrac{AF}{AB}.\dfrac{KB}{KC}.\dfrac{GC}{GF}=1\Rightarrow\dfrac{GC}{GF}=\dfrac{KC}{KB}.\dfrac{AB}{AF}\). (1)

Áp dụng định lý Menelaus cho tam giác ACB với cát tuyến K, E, F ta  có:

\(\dfrac{EA}{EC}.\dfrac{KC}{KB}.\dfrac{FB}{FA}=1\Rightarrow\dfrac{KC}{KB}=\dfrac{FA}{FB}.\dfrac{EC}{EA}\). (2)

Từ (1), (2) có \(\dfrac{GC}{GF}=\dfrac{EC}{EA}.\dfrac{AB}{FB}\). (*)

Mặt khác áp dụng định lý Menelaus cho tam giác AFC với cát tuyến B, H, E ta có:

\(\dfrac{HC}{HF}.\dfrac{BF}{BA}.\dfrac{EA}{EC}=1\Rightarrow\dfrac{HC}{HF}=\dfrac{AB}{FB}.\dfrac{EC}{EA}\). (**)

Từ (*), (**) ta có \(\dfrac{GC}{GF}=\dfrac{HC}{HF}\Rightarrow\dfrac{AC}{MF}=\dfrac{AC}{NF}\Rightarrow FM=FN\).

 

1 tháng 2 2023

loading...  loading...  

2 tháng 3 2021

a) Ta có: AM//BD

=> \(\dfrac{AM}{BD}=\dfrac{AF}{FB}\)

Xét tam giác ACB có CF là đường phân giác góc C

=> \(\dfrac{AC}{BC}=\dfrac{AF}{BF}\) (theo t/chất đường phân giác trong tam giác)

=> \(\dfrac{AM}{BD}=\dfrac{AC}{BC}\)

 

2 tháng 3 2021

Câu b đợi mình nháp xíu nha.

5 tháng 11 2023

\({}\)

a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.

Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\) 

\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)

\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))

Vậy \(IE\perp ME\)

b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)

 Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).

c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP

\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)

\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)

\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)

\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)

Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)