TAm giác abc có góc b=30°, c=15°.am là trung tuyến.tính góc amb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
Mình không biết dùng cái này nên vẽ hơi xấu . Mong bạn thông cảm
A B C M N Q P
Hình bạn tự vẽ nha !
Bài làm :
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\)(Vì AM là tia phân giác của \(\widehat{BAC}\))
AM cạnh chung
=> \(\Delta AMB=\Delta AMC\left(c.g.c\right)\)
=> BM = CM (2 cạnh tương ứng)
=> M là trung điểm BC
b) Xét \(\Delta BMN\)và \(\Delta CMA\)có :
AM = NM ( Vì M là trung điểm AN)
\(\widehat{BMN}=\widehat{CMA}\)( đối đỉnh )
BM = CM (cmt)
=> \(\Delta BMN=\Delta CMA\left(c.g.c\right)\)
\(\widehat{BNM}=\widehat{CAM}\)( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BN // AC
c) Xét \(\Delta AMQ\)vuông tại Q và \(\Delta AMP\)vuông tại P có :
\(\widehat{BAM}=\widehat{CAM}\)(gt)
AM cạnh chung
=> \(\Delta AMQ=\Delta AMP\left(ch-gn\right)\)
=> MQ = MP ( 2 cạnh tương ứng )
\(\Delta ABC\) có \(AB=BC\left(gt\right)\) nên là tam giác cân
\(\Rightarrow ABC=ACB=\frac{180-A}{2}=\frac{180-40^o}{2}=70^o\)
\(AM\) là đường trung tuyến của tam giác cân đó ( vì \(MB=MC\) )
\(\Delta ABC\) cân tại \(A\)có \(AM\)l là đường trung tuyến nên cũng là đường cao và đường phân giác
\(\Rightarrow\)Góc \(AMB=\) góc\(AMC=90^o\) và góc \(BAM=CAM=\frac{A}{2}=\frac{40^o}{2}=20^o\)
de vai
Dễ thì làm đi