Cho tam giác ABC ,trên AB lấy D và E sao cho AD=BE.Trên AC lấy F và H sao cho AF=CH.Các đường trung tuyến AK, BN, CM của tam giác ABC cắt nhau tại G. HG cắt BF tại I.
a) I là trung điểm BF
b)Tam giác BFH và tam giác CDE có cùng trọng tâm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu đầu tiên nhé :)
a) Xét tam giác ABM và tam giác DMC có :
BM = CM ( gt )
\(\widehat{AMB}=\widehat{DMC}\)
AM = DM ( gt )
\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )
Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)