Tìm x: x.(2+x).(7-x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
a) x=0 hoặc x+7=0
suy ra x=0 hoặc x=-7
b) x+12=0 hoặc x-3=0
x=-12 hoặc x=3
c) x=0 hoặc x+2=0 hoặc 7-x=0
x=0 hoặc x=-2 hoặc x=7
d) x-1=0 hoặc x+2=0 hoặc -x-3=0
suy ra x=1 hoặc x=-2 hoặc x=-3
Bài làm
x( x + 7 ) = 0
<=> x = 0 hoẵ x + 7 = 0
=> x = 0 hoặc x = -7
Vậy x = 0 hoặc x = -7
( x + 12 )( x - 3 ) = 0
<=> x + 12 = 0 hoặc x - 3 = 0
=> x = -12 hoặc x = 3
Vậy x = -12 hoặc x = 3
( -x + 5 )( 3 - x ) = 0
<=> -x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
Vậy x = 5 hoặc x = 3
x( 2 + x )( 7 - x ) = 0
<=> x = 0 hoặc 2 + x = 0 hoặc 7 - x = 0
=> x = 0 hoặc x = -2 hoặc x = 7
Vậy x = 0 hoặc x = -2 hoặc x j 7
( x - 1 )( x + 2 )( -x - 3 ) = 0
<=> ( x - 1 ) = 0 hoặc x + 2 = 0 hoặc ( -x - 3 ) = 0
<=> x = 1 hoăc x = -2 hoặc x = ( -3)
Vậy x = 1 hoặc x = 2 hoặc x = -3
a) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
d) \(\Rightarrow\left(x-7\right)\left(3x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\\ c,\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
1) -12+3.(-x+7)=-18
3.(-x+7)=-18+12
3.(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
1. x(x + 7) = 0
=> x = 0
x + 7 = 0 => x = -7
Vậy x = 0 ; -7
2. (x + 12)(x - 3) = 0
x + 12 = 0 => x = -12
x - 3 = 0 => x = 3
Vậy x = -12 ; 3
3. (-x + 5)(3 - x) = 0
-x + 5 = 0 => -x = -5 => x = 5
3 - x = 0 => x = 3
Vậy z = 5 ; 3
4. x(2 + x)(7 - x) = 0
=> x = 0
2 + x = 0 => x = -2
7 - x = 0 => x = 7
Vậy x = 0 ; -2 ; 7
5. (x - 1)(x + 2)(-x - 3) = 0
x - 1 = 0 => x = 1
x + 2 = 0 => x = -2
-x - 3 = 0 => -x = 3 => x = -3
Vậy x = 1 ; -2 ; -3
\(x+\left(x+7\right)=0\)
+) \(x=0\)
+) \(x+7=0=>x=-7\)
Vậy x=0 hoặc x=-7
\(\left(x+12\right).\left(x-3\right)=0\)
+) \(x+12=0=>x=-12\)
+) \(x-3=0=>x=3\)
Vậy x=-12 hoặc x=3
\(x.\left(2+x\right).\left(7-x\right)=0\)
+) \(x=0\)
+) \(2+x=0=>x=-2\)
+) \(7-x=0=>x=7\)
Vậy x=0 hoặc x=-2 hoặc x=7
\(\left(x-1\right).\left(x+2\right).\left(x+3\right)=0\)
+) \(x-1=0=>x=1\)
+) \(x+2=0=>x=-2\)
+) \(x+3=0=>x=-3\)
Vậy x=1 hoặc x=-2 hoặc x=-3
a, x.(x+7) = 0
=> x = 0 hoặc x+7=0
=> x = -7
vậy x = 0 hoặc x = -7
b, (x+12). (x-3)=0
=> x+12=0 hoặc x-3=0
=> x = -12 ; => x = 3
vậy x = -12 hoặc x = 3
d, x.(2+x).(7-x) = 0
=> x = 0 hoặc 2 + x = 0 hoặc 7-x = 0
=> x = -2 => x = 7
vậy x = 0 hoặc x = -2 hoặc x = 7
e (x-1).(x-2).(x-3) = 0
=> x-1 = 0 hoặc x- 2 = 0 hoặc x-3 = 0
=> x = 1 => x= 2 => x = 3
c (-5+5 ) .( 3 -x ) =0
vì (-5+5 ) = 0 => 3-x vô số để ( -5+5 ) . ( 3-x ) = 0
a) x^2+3x=0
<=> x(x+3)=0
<=> x+3=0
---> X=-3
b)x.(x-7).(x+7)=0
<=>x.(x^2-7^2)=0
<=> X^2-7^2=0
==>x= 7 và x=-7
c) x^3-9x=0
<=> x(x^2-3^2)=0
<=> x^2-3^2=0
~~> x = 3 và x=-3
d) x^2-5x-6=0
<=> x^2-5x-5-1=0
<=> (x^2-1)-(5x-5) =0
<=> x(x-1) - 5(x-1)=0
<=> (x-1)(x-5)=0
~~> x-1 = 0 ~> x=1
~~> x-5=0 ~~> x=5
Vậy x=1 và x=5
x^2 -2x = 24
=> x^2 - 2x - 24=0
=>x^2 -8x+6x - 24 = 0
=> ( x^2- 8x)+( 6x-24) = 0
=> x(x-8) + 6(x-8) = 0
=> (x+6)(x-8)=0
=>\(\orbr{\begin{cases}x=-6\\x=8\end{cases}}\)
x.(2+x).(7-x)=0
=> (2+x).(7-x)=0
=> 2+x =0 hoặc 7-x=0
+) 2+x=0 +) 7-x=0
=>x=-2 => x=7
Vậy x thuộc {-2;7}