So sánh: A = 1014 - 1/ 1015 - 11 và B = 1014 + 1/ 1015 + 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
\(\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1014}{1014}\right).\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-1\right).\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...0.\left(1-\frac{1015}{1014}\right)\)
\(=0\)
ta có: 1-(1014/1015)= 1/1015
1-(2014/2015)= 1/2015
vì 1/1015>1/2015 =>1014/1015<2014/2015
VẬY 1014/1015<2014/2015
có : 1-1014/1015=1/1015
1-2014/2015=1/2015
do 1/1015>1/2015
suy ra 1014/1015<2014/2015
Lời giải:
\(A-6=5^1+5^2+...+5^{2015}\)
\(5(A-6)=5^2+5^3+...+5^{2016}\)
Trừ theo vế:
\(4(A-6)=5^{2016}-5^1\)
\(\Rightarrow A=\frac{5^{2016}-5}{4}+6=\frac{5^{2016}+19}{4}\)
--------------
\(B=\frac{5^{1015}(5^{1001}+2)-10.5^{1014}-1}{4}=\frac{5^{2016}+2.5^{1015}-2.5^{1015}-1}{4}\)
\(=\frac{5^{2016}-1}{4}< \frac{5^{2016}+19}{4}\)
Do đó \(B< A\)
10 A = 10 16 + 10 10 16 + 1 = 1 + 9 10 16 + 1 10 B = 10 17 + 10 10 17 + 1 = 1 + 9 10 17 + 1
Vì 9 10 16 + 1 > 9 10 17 + 1 nên 10 A > 10 B
Vậy A > B
Ta có:
\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)
\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)
\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)
\(\Rightarrow B=2^{2013}-1\)
\(A=2^{2003}.9+2^{2003}.1005\)
\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)
\(\Rightarrow A=2^{2003}.1024\)
\(\Rightarrow A=2^{2003}.2^{10}\)
\(\Rightarrow A=2^{2013}\)
Vì \(2^{2013}-1< 2^{2013}\) nên A > B
Vậy A > B
`A=(10^14-1)/(10^15-11)`
`=>10A=(10^15-10)/(10^15-11)`
`=>10A=(10^15-11+1)/(10^15-11)`
`=>10A=1+1/(10^15-1)`
`=>A>1/10`
`B=(10^14+1)/(10^15+9)`
`=>10B=(10^15+10)/(10^15+9)`
`=>10A=(10^15+9+1)/(10^15+9)`
`=>10A=1+1/(10^15+9)`
Vì `1/(10^15-1)>1/(10^15+9)`
`=>10B>10A`
`=>B>A`
Giải:
\(A=\dfrac{10^{14}-1}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-10}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-11+1}{10^{15}-11}\)
\(10A=1+\dfrac{1}{10^{15}-11}\)
Tương tự:
\(B=\dfrac{10^{14}+1}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+10}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+9+1}{10^{15}+9}\)
\(10B=1+\dfrac{1}{10^{15}+9}\)
Vì \(\dfrac{1}{10^{15}-11}>\dfrac{1}{10^{15}+9}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Chúc bạn học tốt!