Cho hình thang ABCD có hai đáy AB và CD . Biết AB = 15 cm , CD = 20 cm ; chiều cao hình thang là 14 cm . Hai đường chéo AC và BD cắt nhau tại E .
a) Tính diện tích hình thang ABCD ( quá dễ )
b) Tính diện tích tam giác CED
c) Chứng minh hai tam giác AED và BEC bằng nhau
A B C D E 20 15 14
+) Ta có: S(AED) = S(ADB) - S(AEB)
S(BEC) = S(ACB) - S(AEB)
mà S(ADB) = S(ACB) do chều cao hạ từ D và C xuống AB bằng nhau và chung đáy AB
=> S(AED) = S(BEC)
+) Ta có: S(ABC) = 14 x 15 : 2 = 105 cm2
S(ADC) = 14 x 20 : 2 = 140 cm2
=> S(ABC) / S(ACD) = 105 / 140 = 3/4
Tam giác ABC và ACD có chung đáy là AC nên
Chiều cao hạ từ B xuống AC / chiều cao hạ từ D xuống AC = 3/4
Mà tam giác BEC và AED có diện tích bằng nhau
=> đáy EC/ đáy AE = 3/4
+) Tam giác CED và tam giác AED có chùng chiều cao hạ từ D xuống AC
đáy EC/ AE = 3/4
=> S(CED)/ S(AED) = 3/4
=> S(CED)/ S(ACD) = 3/7 =>S (CED) = 3/7 x S(ACD) = 3/7 x 140 = 60 cm2
b) kẻ HK qua E vuông góc với 2 đáy.EK la chiều cao tg CDE.
Theo ĐL ta-let :
AB/CD=EH/EK
=>EK/HK=CD/(AB+CD) => EK=8cm
S = 80(cm2)